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Abstract 
The use of heavy ions beams with mass of order 100 

atomic mass units and energy of order 10 MeV per 
nucleon has been proposed as a driver for heavy ion 
fusion. Multi-electron-loss collisions of the beam ions 
with the background gas atoms result in an increase in the 
ion charge, which is an unwanted effect for beam 
propagation through the accelerator and transport regions, 
and the target chamber. Knowledge of the electron-loss 
cross-sections is essential to understand and address this 
issue. This paper describes the theoretical methods 
employed for calculation of the cross-sections. 

1 INTRODUCTION 
To describe the collision cross-sections of heavy 

particles it is natural to use the eikonal approximation as 
described in Ref.1. In this approximation, the scattering 
amplitude for inelastic transitions from initial state i to 
final state f is given by [1] 

∫ ><= ρ
π

ρ 2

2
def|S|i

i

’k
f i

if

q ,  (1) 

where p and p’ are the particle momenta before and after 
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where U(r) is the sum of interaction potentials between all 
projectile electrons (at positions rP) and target electrons 
and nuclei (at positions rT), and V is the relative velocity. 
Conservation of energy requires that [1] 
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where Ei and Ef are the initial and final energy states, M is 
the mass of the projectile, and θ is the scattering angle. 
The total cross-section ifσ  is the integral of the square of 

the scattering amplitude over the scattering angle. Making 
use of Eq.(4), ifσ  can be expressed in the form [1] 
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The total cross-section for electron loss from the 
projectile particle is determined by integrating over all 
possible final states of the target atom and energies of the 
ionized electrons in Eq.(5).  

2 APPROXIMATIONS EMPLOYED FOR 
CROSS-SECTION CALCUALTIONS 

The calculation of ifσ  by using Eq.(5) is 

straightforward but rather cumbersome, which is why a 
number of approximations are desirable. If 1<<)( ρΨ  

for all ρ, then ( ) )(i)(iexp ρΨρΨ −≈− 1 , and Eq.(2) 

coincides with the Born-approximation. For neutral target 
atoms with nucleus charge ZT, )( ρΨ  has a maximum at 

0=ρ , where )V/(eZ~)( T �20Ψ , and the condition for 

validity of the Born-approximation for all impact 
parameters can be expressed as 
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In the opposite limit to Eq.(6), the situation is more 
complicated. Because )( ρΨ  is a rapidly decreasing 

function of impact parameter ρ, one can separate regions 
where 1<)( ρΨ  for *ρρ >  [ 1=*)( ρΨ ] from the 

region where *ρρ <  and 1>)( ρΨ . In the region where 

*ρρ >  the Born-approximation can be used. In the 

region where *ρρ < , the quasi-classical approximation 

can be utilized. For example, this approach has been 
successfully used for the calculation of vibrational and 
rotational transitions in molecules [2]. Furthermore, if the 
momentum pe of the ionized electron is large enough that 
the uncertainty of the electron position is smaller than the 
target and projectile atomic radii,  

PTe a,ap/a <<=�∆ , (7)  

a classical calculation can be used. Indeed, let us consider 
an ionizing collision under conditions opposite to the limit 
in Eq.(6). A high-energy ionized electron with momentum 
pe, satisfying the inequality in Eq.(7), can be 
approximately described by the plane wave 

)/iexp(~ ef �rpψ . Because the phases of the scattering 

amplitude in Eq.(2) and the electron wave function are 
large, the method of stationary phase can be applied for 
estimation of the integral >< f|S|i . Thus, the main 

contribution to the integral is for  

∫
∞

∞− ∂
∂−= dz)z,,(U

V P

P

e r
r

p ρ1
, (8) 

which corresponds to the classical calculation of electron 
scattering.  
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2.1 Born-Approximation 

If the inequality in Eq.(6) is satisfied, the Born-
approximation is valid for all impact parameters. It is 
convenient to recast the integral in Eq.(1) using Fourier 
transforms. Some straightforward algebra readily yields 
[3] 
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where qmin is given by Eq.(4) with θ=0, )l,q,(Pion

P ε  is the 

ionization transition strength of the projectile electron 
with final energy ε and orbital momentum l, ifT represents 
the summation over all final states of the target atom, 

fTi0δ  is Kroniker function, j

i

T )q(F fT  is the inelastic form 

factor for the j’th electron of the target atom. Information 
on the inelastic atomic form factor  (the final state is not 
the ground state) is rare and has to be calculated 
numerically. The ionization transition strength (10) has 
been calculated analytically only for one-electron ions [4]. 
For multi-electron ions, )l,q,(Pion

P ε  also has to be 

calculated numerically.  
Considerable simplification is possible if the difference 

in qmin for different final states can be neglected, 
approximating V/Iqmin �= , where I is the ionization 

potential. Thus, we obtain  
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Here, )q(Pion

P  is the probability of ionization of an 

electron with recoil momentum q after a collision, and 
)q(Z eff

T  is the effective charge of the target atom.  

The summation in Eq.(14) is traditionally represented as 
a sum of the coherent (elastic, ifT=0) and the incoherent 
scattering functions (ifT 0≠ ). Numerical values of the 
coherent and incoherent scattering functions can be found 
in Ref. 8. Making use of the orthogonality and 
completeness of the wave functions, the incoherent 
scattering functions can be expressed in terms of the 
initial state [1]. Moreover, making use of Hartree’s 
approximation for the atomic electron wave functions 
(neglecting Fock’s exchange terms), we obtain the 
incoherent scattering function as a sum over individual 
electron form factors of the target atom [5]. This gives 
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where NT is the number of electrons. Convenient 
analytical representations for the individual electron 
atomic form factors jT )q(F 0  are available for many 

atoms, e.g., see Refs. 6, 7 and 8. For heavy atoms with 
very large TZ , the Thomas-Fermi-Dirac model can be 

utilized [5].  
Note that in the limit ∞→q  and 00 →jT )q(F , the 

coherent ( 2

T

el

T ZS → ) and incoherent scattering 

( T

inc

T NS → ) functions describe the interaction with the 

bare nucleus and with free atom electrons, respectively. In 
the opposite limit, 0→q  and 10 →jT )q(F , the scattering 

functions for neutral atoms ( TT ZN = ) tends to zero. 

Correspondingly, the function [ ] 32
q/)q(Z eff

T  for the 

neutral atoms tends to zero for large and small q values, 
and therefore the values qaT ~1 contribute to the integral 
in Eq.(9). Examples of good agreement between theory 
and experimental data can be found in Ref. 9. 

Rough estimates can be made if )q(Pion

P is 

approximated by a step-function, i.e., zero for 
I/)q(m <22� , and unity otherwise. For large I, q is also 

large and TT

eff
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2.2 Impulse Approximation 
 

If the inequality in Eq.(6) is not satisfied, the Born 
approximation cannot be used. Nevertheless, separating 
large impact parameters with 1<<)( ρΨ , the Born 

approximation can be used exclusively for *ρρ > . For 

impact parameters *ρρ <  we can use the impulse 

approach [1] of instant interaction. The cross-section (13) 
derived in the Born-approximation is the product 
(integrated over all q), of the total differential cross-
section of elastic and inelastic electron scattering with 
recoil momentum q, multiplied by the probability of 
ionization after the electron receives the recoil momentum 
q. 

For the case opposite to the inequality in Eq.(6), the 
cross-section for electron scattering can not be calculated 
by use of the Born-approximation. Instead, we can use a 
classical calculation of the cross-section )q(d clσ . This 

gives 
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where )q(d clσ  is calculated by accounting only for small 

impact parameters, *ρρ < , and *)(B

ion ρρσ >  is 

calculated from Eq.(13) accounting for only large impact 
parameters, *ρρ > . In contrast to the classical trajectory 
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method [10], Eq.(20) also incorporates classically 
forbidden transitions, both in the factor )q(Pion

P , and 

particularly in *)(B

ion ρρσ > . For example, in collisions 

with target ions, the long-range interactions for distances 
larger than the atomic radius, the ionization transitions are 
classically impossible (at large velocities the momentum 
transfer in Eq.(8) is too small to ionize). However 

quantum-mechanical effects with *)(B

ion ρρσ >  

contribute significantly to the cross-section. 

2.2 Comparison of the Classical and Born 
Approximations 
 

To illustrate differences between the classical and 
quantum-mechanical calculations, we have simulated 
stripping cross-sections for He+ on He, N and Ar atoms. 
The Born approximation calculations were carried out 
using Eq.(13). We compared the results with the Bohr 
formula, which is derived by calculating the classical 
scattering in the limit in Eq.(6). Under the conditions in 
Eq.(6), the distance of closest approach in a collision is 
much smaller than the atomic radius. Therefore, the 
collision can be viewed as a collision with a bare nucleus 
and free electrons. Applying the Rutherford formula 
readily yields 

I
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Interestingly, the Bohr formula (21), assuming classical 
scattering, coincides with the quantum-mechanical 
calculation in Eq.(19). This is a consequence of the fact 
that the Coulomb scattering is the same in quantum-
mechanical and classical calculations [1]. However, under 
the condition in Eq.(6), the classical calculations are 
inaccurate because distance of closest approach is smaller 
than the electron wavelength [11]. In the general case, the 
Born-approximation results in Eq.(13) differ from the 
Bohr formula in Eq.(20). The Bohr formula does not 
account for screening of the nucleus charge, and 
consequently overestimates the cross-section when the 
parameter V/eZT �2  tends to unity. This can be corrected 

by calculating the electron scattering on the self-
consistent (average) atomic potential in Eq.(8). The 
contribution of electron density fluctuations, accounted 
for by the incoherent scattering function, decreases 
proportional to TZ/1 . 

As can be seen from Fig.1, the Bohr formula 
overestimates the cross-sections by at least 50%, even in 
the best case of He+ -He collisions. Classical calculations 
give results closer to the Born approximation cross-
section than the Bohr formula in Eq.(21). For other cases, 
the difference between the classical calculation and the 
Born approximation may be larger. For example, 
calculation for a 20 MeV/amu N+6 ion colliding with He 
gives a factor 2.7, and a factor of 1.8 for N, and a factor of 
2.0 for Ar , for the difference between the classical and 
the Born approximations.   
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Fig. 1 Stripping cross-sections of 20 MeV/amu He+ ions 
colliding with He, N and Ar atoms, calculated according 
to the Born approximation in Eq.(13), the Bohr formula in 
Eq.(20), and the classical estimate. 

1 CONCLUSIONS 
We have developed a robust method of calculating 
ionizing collisions for fast-moving ions through 
background atoms. The method use a combination of the 
Born approximation and the impulse approach. Typically, 
the Born approximation overestimates the cross-section, 
and the classical calculation underestimates the cross-
section. The proposed approach eliminates both of these 
shortcomings.  
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