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Abstract

An effort is underway at the Advanced Photon Source
(APS) to explore the Model-Independent Analysis method
on the APS storage ring. Effective methods are devel-
oped to efficiently evaluate the beam position monitors
(BPMs') performance and to easily identify the malfunc-
tioning BPMs. Such a monitoring procedure can help
to improve the overal reliability and performance of the
BPMs, and thus benefit machine operation and physics
studies. We show that the M odel-Independent Analysis can
resolve beam motion below the individual BPM resolution.

1 INTRODUCTION

Statistical analysis of beam position monitor (BPM)
data has shown remarkable potential to significantly en-
hance measurement capability [1, 2]. Motivated by exploit-
ing such potential, various techniques for beam and ma-
chine measurements are being developed under the name
“Model-Independent Analysis’ (MIA). An effort is under-
way at the Advanced Photon Source (APS) to apply/study
MIA to/on the APS storage ring. A basic requirement of
MIA is a BPM system that can measure beam positions
simultaneously at all BPMs for a large number of turns.
For both MIA and other applications, it isimportant to un-
derstand and characterize the performance of a BPM sys-
tem. Therefore, we are developing MIA-based techniques
to systematically and efficiently evaluate the performance
of aBPM system. Preliminary results are reported.

2 ANALYZING BPM PERFORMANCE

The beam history modules in the APS operating system
are used to collect (in x-y toggling mode) beam positions
of 8192 turns at 360 BPMs for each data set. Horizontal
and vertical kickers could be used to excite betatron oscil-
lations. Early design problemsin the BPM history module
have resulted in significant data corruption. Careful anal-
ysis must be done for each data set in order to choose the
BPM history modules that are functioning. Although the
problems revealed in our analysis are caused by the beam
history moduleinstead of other BPM hardware, we will use
the generic term BPM without further clarification.

2.1 ldentifying Malfunctioning BPMs

Most of the mafunctioning BPMs can be identified
by visually examining their beam history plots. How-
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ever, it is a tedious exercise because of the large num-
ber of BPMs. To facilitate this process, one of the basic
MIA technique, SYD mode analysis, can be used. Let
Bpyxn, P pulses and M BPMs, be the data matrix con-
taining the beam history as its columns. Singular value
decomposition (SVD) yields B = USVT, where S =
diag(s1, se,- -, sp) contains the singular values of each
mode, U = [uy, ug, - - -, up] containsthe temporal eigen-
vector u's, and V' = [vy,va, - -, vy contains the spatial
eigenvector v's. Because the vectorsare normalized to one,
apeak value close to onein av-vector means that the mode
is attributable to that peaked BPM. Thus, the potential mal-
functioning BPMs can be located simply by examining the
maximum values of the v-vectors. We typically use 0.7 as
the threshold for selecting potential malfunctioning BPMs.
This procedureyields amuch smaller number of BPMs for
closer examination. For each potential BPM, the corre-
sponding v-vector, u-vector, raw BPM data, and its Fourier
spectrum are automatically plotted for visual examination.
Using this method, the malfunctioning BPMs can be effec-
tively identified and removed. Many malfunctioning BPMs
arefoundin our data sets. Figure 1 (a) shows an example of
abad BPM and (b) shows another example that represents
noisy BPMs picked out by this method. In (b), the BPM
history and its spectrum appear normal, but its rms noise
is clearly much larger. BPMs are also picked out for vari-
ous other reasons (e.g., synchronization problem discussed
later), and sometimesfor no clear reason at al. That iswhy
we would like to visually examine the BPM s picked by the
SVD analysisinstead of automatically rejecting them.

The SVD analysis, by its nature, is not effectivefor iden-
tifying BPMs that do not respond to beam motion. To
solve this problem, the amplitude of betatron oscillation
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Figure 1: Examples of BPMs picked out by SVD analysis.
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(other beam motion can be used as well) is automatically
estimated at each BPM. Those that have suspiciously low
amplitudes are also picked out as potential malfunctioning
BPMs. This method has proven to be very effective.

Because some malfunctioning BPMs may occasionally
be missed during the analysis because of (accidental) cor-
relation with other malfunctioning BPMs, itishelpful tore-
peat the procedureafew times asthe malfunctioning BPMs
are being removed. One may also repeat this procedure
over a particularly interesting subset of the recorded beam
histories for better scrutiny.

2.2 Measuring BPM Resolutions

After identifying and removing the malfunctioning
BPMs, we measure the BPM resolutions and estimate the
noise floor of the BPM system. For this purpose, we use
beam histories that represent an unperturbed beam. Ide-
aly, for each BPM, only random noise exists, and the stan-
dard deviation of the noise givesthe resol ution of the BPM.
However, certain systematic noise often exists for various
reasons. For example, the beam may not be completely
quiet. SVD anaysis can be used again to separate the
coherent systematic noise from the random noise. Fig. 2
plots the first and third modes of one data set. The sec-
ond mode is similar to the first, and the other modes ap-
pear to be more or less random noise. The first mode (a)
shows sporadic mation with a broad-band noise at low fre-
guencies and sharp signals at about 20 and 40 kHz, which
is known as “chopper noise”” The third mode (b) clearly
shows a coherent beam motion caused by longitudinal os-
cillation. Its spatial vector corresponds to the dispersion
function, and the spectrum of its temporal vector reveals a
dominating signal at synchrotron frequency and harmonics
of power-linefrequency, which comefrom the high-voltage
DC power supplies in the RF system. This mode is prob-
ably due to RF phase jitters. Fully understanding and sup-
pressing these coherent modes is important to improving
beam stability but it is not our focus here.
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Figure 2: Examples of horizontal coherent modes.
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Figure 3: Horizontal BPM resolutions.

To measure the BPM resolutions, we exclude the three
coherent modes by zeroing their singular values and recon-
structing adata matrix that contains only the random noise.
Then we compute the standard deviation of each BPM as
its resolution [3]. Fig. 3 shows an automatically generated
graph that summarizes the resolutions of a BPM system.
There are four sets of data in this graph: 1) the eigenval-
ues, 2) the standard deviations divided by the square-root
of the number of BPMs, 3) the sorted standard deviationsto
compare with the eigenvalue spectrum, and 4) circles that
identify (by SVD) potential malfunctioning BPMs. The
agreement between the eigenvalues and the sorted resolu-
tions confirms that we indeed approach the random noise
background of the BPM system. These two curves do not
reach the total number of BPMs because many BPMs are
not functioning and removed.

The BPMs on the upper part of Fig. 3 have much larger
noise, mostly because they deliberately use higher gains.
The magnitude of the noise floor represents the potential
sensitivity of the BPM system for detecting coherent sig-
nals. Note that this sensivity is much less than individ-
ual BPM resolution (remember the square-root factor). If
we remove the noisy BPMs, the BPM system may reach
sub-micron resolution (the vertical unit is “BPM count,”
~ Tum, used in our BPM system), provided that all the
BPMs function well.

2.3 Examining BPM Synchronization

For MIA applications, it is important to have al the
BPM readings synchronized on the same pulse. At APS,
the BPMs are synchronized only within a couple turns. In
any data set, a large percentage of BPMs are unsynchro-
nized, and this happens randomly among BPMs. To ex-
amine BPM synchronization, we use a kicked beam as our
synchronization signal. Unsynchronized BPMs may gen-
erate modesin SVD analysis. Two examples are shown in
Fig. 4. Thefirst () is a mode due to BPMs that are one
turn ahead, and the second (b) is a mode due to BPMs that
are one turn behind the kick starting at turn 48. BPMs with
larger-than-0.2 magnitudesin the spatial vectorsare unsyn-
chronized. Although such modes may be used to identify
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Figure 4: Modes due to unsynchronized BPMs.

the unsynchronized BPMss, a more straightforward and ef-
fective method is to directly check the starting turn in each
BPM. One subtle problem is that some BPMs may not see
the kick right away because of nm phase advance between
the kicker and the BPMs. We are exploring more sophis-
ticated algorithms to automatically detect the unsynchro-
nized BPMs and correct the BPM data by lining up the
beam histories. Even if such correction can be done, it still
requires arelatively strong synchronization signal and may
limit the capability for resolving weak signals.

2.4 Satistics of BPM Performance

Usually, turn-by-turn BPM data are vulnerable to acci-
dental noise. The above techniques can be used to identify
malfunctioning BPMs and improve the quality of a given
data set. For improving a BPM system, it is more useful
to obtain the statistics of BPM performance. A MATLAB
routine is being devel oped to automatically extract thisin-
formation from available data sets in which BPM perfor-
mance has been analyzed and recorded.

3 ENHANCING THE ACCURACY OF
BEAM OBSERVATION

We have discussed MIA techniques to evaluate BPMsS
performance and extract a subset of arecorded BPM data
set such that al the BPMs are functioning. Thisis just a
first step for various MIA applications. For a good BPM
system, this first step is merely an assurance of datarelia-
bility. The next major and common step is to statistically
reduce random noise in a data set, which is a signature of
MIA. Two examples are shown here to demonstrate one
benefit of MIA. Fig. 5 plots the raw digitized history of
a horizontally kicked beam recorded at one BPM and the
same history after SVD noise reduction. The inserts are
two blow-ups. Fig. 6isasimilar plot for avertically kicked
beam. In this case, in addition to the SVD noise reduction,
a high-pass Fourier filter is also used to remove the low-
frequency noise. The apparent beating pattern is because
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Figure 5: Noise reduction for a horizontally kicked beam.
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Figure 6: Noise reduction for avertically kicked beam.

our sampling rate (twice that of the betatron tune 0.27 in
x-y toggling mode) is close to haf integer. In both cases,
even though we still suffer from unsynchronized BPMs, the
benefit is obvious. Beam motion can be clearly seen be-
yond the gridlines of BPM digitization.

4 SUMMARY

Although preliminary, our work demonstrates that MIA
techniques can be used to systematically evaluate the per-
formance of aBPM system. Such information is useful for
monitoring and improving the quality of BPMs, which is
important not only for MIA but also for other applications
such as feedback control and physics studies. Our discus-
sions arefocused on aturn-by-turn BPM system. The same
analysis should be useful for systems based on averaged or-
bits.

Specia thanks to G. Decker for commenting on the
manuscript and for helpful discussions.
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