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Abstract

In the most common approach to modeling transition ra-
diation, the annihilation of the incident particle with its im-
age particle at the metallic boundary is calculated. This is
valid only for ideal planar boundaries, and is not applicable
if the surface is modulated, rough or limited in the trans-
verse dimension. In this paper, we show results obtained
by replacing the image current with the induced surface
charge and surface distributions. Special problems such as
a modulated surface are analytically solved and compared
to numerical simulation. Implications for experimental use
of transition radiation-based beam monitors are discussed.

1 INTRODUCTION

Because transition radiation (TR) is frequently used for
electron beam diagnostic purposes, a fundamental under-
standing of the process is essential. In the standard model
the electric field of the incident electron polarizes a dielec-
tric boundary. The changing polarization emits radiation in
the forward and backward direction [1]. The case of a per-
fectly conducting plane is obtained in the limit of an infi-
nite value for the dielectric constant. Another more heuris-
tic model employs the annihilation of the electron with its
mirror particle [2]. Although simple, the model relies on
the crude approximation of an instantaneous halt of both
particles’ motion.

A more sophisticated and physically transparent model
is based on a virtual photon picture of the electron’s elec-
tric field. Due to the introduction of boundary conditions,
these photons becomes real, resulting in the observed TR
[3, 4]. This model is a practical improvement on those pre-
viously mentioned, as does not rely on the assumption of
an infinite conducting plane, although in previous work it
has still required assumption of an even surface to match
the boundary condition.

To circumvent the limitations of these previous analyses,
we present here a model of radiation generation based on
induced surface currents [6]. We obtain the current density
for the case of an infinite flat surface, and then apply it to
the standard formulae with the modified boundary condi-
tions appropriate for describing finite size, or uneven con-
ducting surfaces.

2 THE TRANSITION RADIATION
MODEL

For simplicity and brevity, we analyze only the case in
which an electron strikes the conducting surface at normal
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incidence. The method presented can easily be generalized
to deal with cases of arbitrary incidence. To calculate the
radiated energy per frequency and solid angle we derive
the induced current density on the surface of a perfectly
conducting plane for a relativistic electron whose velocity
vector is parallel to the normal vector of the plane (the z-
direction). We employ the method of image particles to
obtain the induced surface charge density, by calculating
the normal component of the (retarded) electric field at the
boundary. The current density
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is thus obtained from the continuity equation. Here γ is
the Lorenz factor and v is the electron velocity. Integrating
over the parameterized time t′ = (γv/r)t, the energy per
frequency and solid angle [5] becomes
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where �n defines the direction of observation, �k = kn̂
and k is the wavenumber. We align the coordinate system
so that �n lies in the xz-plane. The vectors �n and �ez enclose
the observation angle θ. The vector product �n × �n × �r is
then expressed as x cos θ�e1 + y�e2. The vector �e1 lies in the
xz-plane and is perpendicular to �n while �e2 is identical to
�ey . The integrated term proportional to y�e2 is either zero or
small compared to the first term and is therefore generally
neglected. The remaining integral is
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Further calculations are based on this equation. Note that
any arbitrary surface given by z(x, y) is expressed by the
phase factor in Eq. 3 as �k · �r = k(x sin θ + z(x, y) cos θ).
In the following sections we investigate different cases of
interest for the conducting surface surface.

3 THE INFINITE PLANE

In the case of a infinite plane we can compare the results
of the present model to those obtained by previous meth-
ods. The z-dependence on x and y vanishes and Eq. 3 is
easily integrated by using the identity K ′

0(a) = −K1(a)
and the cosine transformation of the Bessel function. The
result is

W =
q2

4π2c
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(4)
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and differs to other formulae [2] by substitution of the
factor sin(2θ)/2 for sin(θ). The 2θ dependence of the sine
function suppresses any radiation at an angle of 90 degrees.
This is physically more reasonable because our model ex-
cludes any current density component in z.

For a relativistic electron (β ≈ 1) the radiation is sharply
peaked around the angle of θ = 1/γ of maximum emission.

4 THE FINITE PLANE

To investigate the experimentally relevant effects of a
finite conducting plane, we restrict the integration over x
and y in Eq. 3 to a finite size. For sake of simplicity we
assume a circular area of radius R. The complex term
exp[−ikr sin θ cosφ] in Eq. 3 can then be expanded into
a series of Bessel function. The integration over the az-
imuthal angle φ yields a non-zero value only for the term
proportional to J1. The integral thus becomes
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With W0 as the energy per frequency and solid angle for

the infinite plane (Eq. 4) the final result is

W = W0

[
1 − ωR

γv
K1

(
ωR

γv

)
J0 (kR sin θ)

− cωR

γ2v2 sin θ
K0

(
ωR

γv

)
J1 (kR sin θ)

]2

(6)

In the limit R → ∞ the Bessel functions cancel each
other and the angular distribution is identical to Eq. 4. Note
that Eq. 6 omits a small correction factor arising from a
virtual photon analysis [4], which is due to violation of the
continuity equation at the edge of the conducting boundary.
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Figure 1: Angular distribution of transition radiation for
different radii: ∞, 10 mm, 6.4 mm, 3.6 mm and 1.6 mm
(solid, dotted, dashed, dot-dashed and dot-dot-dot-dashed
line, respectively) and γ = 100, k = 2π/1 mm.

As seen in Fig. 1 the two main effects of a finite plane
boundary are reduced emission, and a wider opening angle
due to diffraction. This implies consequences for detectors
which rely on a large signal-noise ratio. Although the radi-
ation exhibits diffraction effects due to a small source size
of the emitter — namely the finite plane — the opening
angle depends on the electron energy as well for a given
wavelength.

The argument of the Bessel functionK1 in Eq. 3 mainly
determines the active area of emitting radiation. The expo-
nential drop of K1 for large arguments suppress any con-
tribution to the radiation outside ωr/γv > 6. Thus we
estimate the boundary of the active area as Ra ≈ γλ. For
coherent transition radiation in the millimeter range it re-
quires targets of the size of several centimeters to achieve
maximum signal. The cut-off of coherent transition radi-
ation (CTR) production at long wavelengths has been ob-
served in experiments, and causes complication of inter-
preting bunch length measurements base on CTR [7].

5 THE MODULATED PLANE

A sinusoidally modulated plane can be seen as a first
conceptual step towards understanding both grating transi-
tion radiation (GTR)[8], and the production of TR from
a rough surface. A modulated plane effects only a cer-
tain wavelength range. In the limit of long wavelength the
phase modulation due to the complex term exp[ikz cos θ]
becomes negligible while in the opposite limit the radius of
the actively radiation area (s.a.) becomes smaller than one
period of the modulation and thus approach the case of a
flat plane. The modulation is described by

z = 2µ cos[α(x cosφ+ y sinφ)] cos[β(y cosφ) − x sin φ]
(7)

where µ is the amplitude of the modulation and α, β
are the wavenumbers in two perpendicular direction within
the xy-plane. Because the observation point lies within
the xz-plane we introduce the azimuthal dependence on
φ by rotating the plane instead of the observation point.
Eq. 7 is expanded into µ(cos η1 + cos η2) with η1,2 =
x[α cosφ∓ β sinφ] + y[α sinφ± β cosφ]. The upper and
lower signs denote η1 and η2, respectively. Using the iden-
tity exp[−ia cos b] =

∑
(−i)|m|J|m|(a)eimb the integra-

tion of Eq. 3 yields
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with

Jmn = (−i)|m|+|n|J|m|(kµ cos θ)J|n|(kµ cos θ) (9)

amn = −k sin θ+(m+n)α cosφ−(m−n)β sinφ (10)

bmn = (m+n)α sinφ+(m−n)β cosφ (11)
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In the limit ω, µ → 0 all Bessel functions except for
J0 become zero. With J00 = 1 the result agrees with
Eq. 4. For short wavelength k sin θ is the dominant term
in amn. By dropping all smaller terms in amn and bmn

only Jmn depends on m and n. Summing up Jmn yields
exp(−2ikµ cos θ), a phase shift due to the amplitude of the
modulation at the impact point of the electron.

Figure 2: Angular distribution of transition radiation for a
modulated plane with γ = 35, λ = 460 nm, µ = 100 nm
and α, β = 2π/100λ.

Fig. 2 shows an example of a diffraction pattern of a
modulated surface. Beside the standard emission distribu-
tion around θ = 1/γ additional spikes in a well defined di-
rection are present. Those amplitudes diminish for longer
wavelengths as their emission angles become larger. To-
wards shorter wavelength the number of spikes increases
and they are grouped closer to the 1/γ emission cone.

Notable effects of modulation covers roughly two orders
of magnitude around the ‘central wavelength’ µ. The res-
onant effects become stronger if the energy of the incident
electron is increased, because the effective area of radiation
grows and covers more modulation. The resonant overlap
becomes stronger. Similar arguments are valid when the
period of the modulation is shortened. In these limits, and
for modulation in only one transverse direction, the radi-
ation pattern takes on the characteristics of a plane wave
reflected from a grating [8].

6 SURFACE ROUGHNESS

To study the impact of surface roughness on transition
radiation we solve Eq. 3 numerically. We use a recursive
algorithm to model roughness where self-similarity is ob-
tained on any zoom level. Based on the results of the pre-
vious sections roughness has a larger impact for electrons
with higher energy because the active area covers more
roughness.

Fig. 3 shows the angular distribution for γ = 350, λ =
100 nm and a roughness of 100 nm. The transverse size of
the bumps are roughly 100 times larger than their height.

Figure 3: Angular distribution of transition radiation on a
rough surface for γ = 350.

In general roughness increases the opening angle of tran-
sition radiation for wavelengths shorter than a threshold
wavelength. This effect has been observed during the de-
velopment of optical TR measurements [9] for the VISA
FEL experiment. The value of the threshold wavelength
depends on the roughness and the electron energy. For high
energies, and roughness features small compared to the ra-
diation generation region, the radiation profile has speckle
characteristics similar to those obtained from plane wave
reflection from a non-uniform mirror.

7 CONCLUSION

The model of induced current on a surface generated by
an incident electron allows us to calculate the emitted tran-
sition radiation distribution and spectrum for a wider range
of modeled surfaces. It is important to understand the lim-
its of transition radiation as a tool for beam diagnostics. In
particular finite planes and/or rough surfaces reduce the to-
tal power and increase the average emission angle reducing
the efficiency of applied diagnostics.
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