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Abstract
In the manufacturing process beam pipes acquire a

structure on their inner walls with a roughness depth in
the order of typically 0.5 µm rms. This surface structure is
polarised by the beam and can be interpreted as an
artificial dielectric.

The thin dielectric layer model shows, that for rough
tubes there is exactly one synchronous mode, the so
called “rough tube mode” (normally in the THz region),
which couples to the beam. The existence of this mode
was proven by 2D and 3D simulations.

In 2D the surface roughness is represented by irises.
For a special kind of such 2D roughness, namely
rectangular irises with random width and distance, there
exists an easy way to explicitly calculate their equivalent
dielectric properties. Equipped with these we calculate the
wave number of the rough tube mode and contrast it to
the wave number of the thin dielectric layer mode. In
doing so, we present for this geometry a consistent
mathematical formulation of rough surface wake fields.

In 3D simulations the surface roughness is represented
by randomly distributed obstacles. We show two
simulations with few obstacles. In one case the wake field
turns out to be mainly inductive, whereas in the other case
we find again the rough tube mode.

1 INTRODUCTION
Wake fields generated by the surface roughness of
vacuum tubes, resulting from the manufacturing process,
have been studied for quite some time: Future linacs will
accelerate high bunch charges at very short bunch lengths.
E.g. for the planned X-ray FEL of the TESLA project [1]
a bunch charge of 1nC at 25µm rms length is projected.
The Fourier spectrum of such a beam can drive wake
fields up to the THz regime. The ongoing studies
concentrate on whether  the short range surface roughness
wake fields generated by such bunches will significantly
increase their energy width.

In [2] it was shown, using 2D simulations, that wake
fields generated by surface corrugations (i.e. small irises
on the inner tube surface) are similar to those of a smooth
tube coated with a thin dielectric layer. In [2] the irises
representing the surface roughness occupied about 50% of
the surface area, and the results matched if the equivalent
dielectric constant was chosen to be around 2=rε . The

“thin dielectric layer model” of surface roughness was
thoroughly investigated in [3] and related publications.
The most important aspect of this model is, that in a
rough tube exists a single synchronous “rough tube
mode” (RTM) just as there is a “thin dielectric layer
mode” (TDLM) in the coated tube.

In the following we review, how a special type of
surface corrugation (rectangular irises of uniform height
but random width and distance) can be viewed as an
anisotropic dielectric layer. We calculate the RTM for this
special type of roughness and compare it to the TDLM.

2 THE THIN DIELECTRIC LAYER
MODEL

Fig.1: alternating layers of dielectrics.

2.1 Averaging of Alternating Dielectric Layers
Consider alternating layers of dielectrics as in Fig.1

with  relative permittivities 1ε  and 2ε . Averaging of the

material properties leads to an equivalent homogeneous
anisotropic dielectric [4]. We use a quasi static approach,
i.e. we assume that within the volumes, used for
averaging, the fields do not change. The quasi static
approach leads to correct results as long as the considered
wavelengths are bigger than the typical period length.

In case of regular layers as shown in Fig. 1, it is
sufficient to consider two adjacent layers.  Tangential to
the layers in the volume indicated in Fig. 1 two parallel
capacities are replaced by an equivalent one, e.g. in x
direction
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Normal to the layers the averaging process combines
two serial capacities
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Obviously the result of this averaging, when carried out
over appropriately large regions in space, does not depend
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on any periodicity of the layers. This explains, why the
thin dielectric layer model applies equally well to periodic
as to random surface perturbations.

2.2 Conducting Materials
If material 2 is a good conductor the same expressions

Eqs. (1), (2) derived above can be used, for the complex
dielectric constant

ω
κε
i

2
2 ≈ ,    (3)

where 2κ  denotes the conductivity of material 2. 2κ
will typically be such that

12 εε �� ,    (4)

which immediately reduces Eq. (2)  to
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 Eq. (5) reflects, that zE  is confined to the layers of

material 1 between the conducting sheets, while the latter
are on fixed potentials. In order to reach the required
voltage difference the field in the layers of material 1 is
proportionally higher.

The parallel permittivities according to Eq. (1) will be
almost purely imaginary
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This result tells us that parallel electric fields will
mainly not penetrate the layers between the conducting
sheets.

Next we turn to the magnetic fields. We remark, that
the parallel magnetic fields in  the layers 1 will neither be
reduced nor amplified. But there are no magnetic fields in
the conducting sheets 2. Thus, when averaging over the
whole space, we require, that
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The results so far have been derived in Cartesian co-
ordinates. If the surface layer is small compared to the
radius of the beam tube, they can be used the same for
circular cylindrical co-ordinates.

In this case radial electric fields induce charges on the
irises. If the induced charges depend on z  there will be
longitudinal electric fields. According to our quasi static
approach, they are concentrated in the gaps. This justifies
Eq. (5) also for this case.

3 CALCULATION OF THE WAVE
NUMBER OF THE ROUGH TUBE MODE

3.1 The Rough Tube Mode
We calculate the fundamental RTM in a tube with

circular cross section in cylindrical co-ordinates. The
RTM is a synchronous ( ckkz /0 ω== ) TM-mode with

the following field configuration:

0,0,0,0/ ===≡∂∂ ρϕϕ HHE z .    (8)

We insert Eq. (8) into Maxwell’s equations in Gaussian
units

HikEEikH µε 00 curl;curl −== ,    (9)

and find  in the usual way for ϕH  (keeping in mind,

that ε  and µ  are tensors in our case)
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We solve this equation separately first in the inner
vacuum region and second in the surface layer.

a) Within the vacuum 1=== ϕρ µεε z , and
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solves the system of equations Eqs. (9), (10). We
remark that this is a synchronous mode as wanted, that it
has finite field values at the origin and that the
longitudinal electric field does not depend on ρ .

b) Turning to the thin surface layer, we use the ansatz
zikefH 0)( −= ρϕ  (12)

which reduces Eq. (10) to
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with ( ) 0/2
0

2 ≠−= ρϕ εεεµ zzkK . Bessel’s equation

Eq. (13) is well known to have the following general
solution, using Bessel 1J  and Neumann 1Y  functions

)()()( 11 ρρρ KBYKAJf += .  (14)
Our solution is therefore
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3.2 Boundary and Continuity Conditions
Let us first fix the dimensions of the tube. Let δ  be the

thickness of the surface layer (height of the irises or
thickness of dielectric), let the surface layer start at

R=1ρ , then the outer perfectly conducting wall of the

tube is at δρ += R2 .

The boundary condition 0)( 2 =ρzE  relates the

constants BA,  yielding
)();( 2020 ρρ KDJBKDYA −== .  (16)

The continuity condition for tangential )( 1ρzE  reads
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    The continuity condition for tangential )( 1ρϕH  is

       ( ))()()()( 112011201 ρρρρρ KYKJKJKYDC −= .   (18)
    Taking the quotient of Eqs. (17), (18), to get rid of the
constants
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This non linear determining equation for K  can in
general only be solved numerically. But if 1, 21 ��ρρ KK

the asymptotic expressions for the Bessel and Neumann

functions  
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After an easy calculation we find
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If now furthermore 1��δK , which actually specifies,
what we mean by a “thin” layer, the right hand side of Eq.
(20) can be approximated by ( ) δδ KK ≈≈ tan  to yield

δ
ε

R
K z22 = .  (21)

The final step is to relate K , the wave number in the

surface layer in radial direction, to 0k  , the synchronous

wave number in the vacuum, via

           ( )ρϕ εεεµ /2
0

2
zzkK −= .  (22)

At this step the RTM and the TDLM behave differently.

a) For the RTM zεε ρ �� , and we may safely neglect

the second summand. We are left with 2
0

2 kK =  and the

RTM wave number is
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The last formula was used in [3] to interpret simulation
results. It was found to be an agreeable approximation.
Deviations naturally were found for distances between the
irises longer than the wavelength of the RTM and for iris
thickness’ bigger than the bunch length.

b) For the TDLM we have rz εεε ρ :==  and 1=ϕµ
which leads to the TDLM wave number
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The difference between the two wave numbers is
caused by the direction and the speed of the wave in the
surface layer. The RTM, as derived here, is directed
purely radial in the gaps and its speed is equal to c .

4 SIMULATION OF 3D OBSTACLES
The thin dielectric layer model described above is a 2D

theory, averaging the rough surface in longitudinal
direction. Furthermore the thin dielectric layer model is
limited to situations where the distance between the irises
is small. The effective consequence of this is, that no
radial electric fields penetrate the gaps. This condition is
not fulfilled for the following examples. Still it is
worthwhile to ask whether a 2D theory will be able to
describe “real world” rough tube wake fields.

Fig.2: models of surface roughness with longitudinally
equidistant cubes. Period length 1mm, cube side length

0.1mm, transverse distance between cubes 0.1mm.
a) all the same z-position b) random z-position.

We simulated with Mafia T3 module in a true 3D
environment cubes, equally spaced in z direction, once all
with the same z position, once with random z positions.

In the regular case the wake field tends to be inductive.
The big distance between the “irises” makes them appear
as single obstacles. In case of random longitudinal
position we find again a RTM with a rather strong
damping caused by decoherence effects. Obviously the
longitudinal distance between the obstacles is effectively
reduced by the random positioning.

Fig. 3: longitudinal wake potentials for the geometries
shown in Fig. (2). case a) above. case b) below.
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