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Abstract 
This paper introduces Accelerator Toolbox (AT) - a 

collection of tools to model storage rings and beam 
transport lines in the MATLAB environment. The 
objective is to illustrate the flexibility and efficiency of 
the AT–MATLAB framework. The paper discusses three 
examples of problems that are analyzed frequently in 
connection with ring-based synchrotron light sources.  

1 BACKGROUND 
AT is being developed to support the ongoing design 

and future operations of the SPERA3 light source [1]. 
Unlike most existing accelerator codes, AT is not a 
standalone program or a class library, but a MATLAB 
toolbox. The user accesses it from within MATLAB. 

AT is a collection of functions and scripts that: 
• Create and manipulate accelerator data structures 

in the MATLAB workspace (lattice tools) 
• Simulate particle motion through elements and 

sequences of elements (low-level physics tools) 
• Compute accelerator parameters and beam 

properties (high-level physics tools) 
This approach has a number of benefits for the end user 

and developer.  
• AT tools take advantage of a large library of math 

functions that are part of MATLAB or its 
toolboxes such as matrix algebra, FFT, 
optimization and control. 

• The users can add new physics tools to AT with 
minimum programming in MATLAB scripting 
language. 

• Results of all calculations are immediately 
available for further analysis and visualization 
using MATLAB graphics. 

A detailed introduction and tutorial on AT can be found 
in [2]. Current version 1.1 for Windows and Linux is 
available for download from [3].  

2 ACCELERATOR MODELING 
Examples in this section illustrate the use of several 

high-level physics functions recently added to AT. Scripts, 
that demonstrate the use of these functions and produce 
the plots in this paper, are included with AT distribution in 
the ����������	
�� directory.  

2.1 Linear Analysis of Coupled Lattices 
The formalism developed in [4] leads to a full-turn 

transfer matrix in the form: 

 
 

(1) 
 

 
(2) 

 
 
where + denotes the symplectic conjugate of a matrix. 

Symplectic matrix V defines the transformation to the 
normal mode basis. Matrixes A and B should be 
interpreted as the Twiss matrixes of the normal modes. All 
matrices in (1) and (2) are functions of the ring azimuth s. 
They characterize local coupling. 

The final expressions for A, B, and C in terms of M, N, 
m, and n at one location in the ring, require about 60 
scalar and 2-by-2 matrix operations such as sum, product, 
transpose, symplectic conjugate, and determinant 
calculation. About 20 operations are required for each 
additional point around the ring.  

In AT, one fuction 
���
�� generates transfer 
matrixes at specified locations around the ring. Another 
function ������ uses 
���
�� and calculates all 
matrix elements in (2). In addition it can calculate other 
linear optics parameters, such as normal mode tunes. 
�������	
� is a script in ����������	
�� 

directory which shows the use of  ������ for the 
SPEAR storage ring. It perturbs the uncoupled model by 
introducing random rotations around the s-axis in some of 
the quadrupole magnets.  Figures 1,2 show the elements 
of matrix C and mixing parameter �.  

 
 

 
Figure 1: Elements of coupling matrix Cij. 
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Figure 2: Mixing parameter �. 

2.2 Beam Envelope with Linear Coupling 
Calculation of the equilibrium beam envelope in the 

presence of linear, but not necessarily weak, coupling is a 
typical problem in storage ring physics. The 
implementation of the formalism [5] is another instructive 
example of how AT utilizes the matrix capabilities of 
MATLAB. The formalism assumes a Gaussian beam 
distribution near the closed orbit: 

( ) ( ) ( ) 
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det2

1

π
ψ  (3) 

 

jiji xxR =,  

Matrix R propagates between s0 and s according to (4). 
 

( ) ( ) ( ) ( ) ( )0000 ,,, ssBssMsRssMsR T += ,    (4) 

 

where ( )0, ssM  is the 6-by-6 transfer matrix between s 

and s0, near the closed orbit. ( )0, ssB  is the cumulative 

diffusion matrix accumulated between s and s0. 
 

( ) ( ) ( ) ( ) sdssMsBssMssB Ts

s
′′′′= ∫ ,,,

0
0   (5) 

The local diffusion matrix B(s) depends on the local 
properties of magnetic field and the closed orbit. In the 
case of a storage ring, given the transfer matrix Mi and the 
cumulative diffusion Bi between the entrance and exit of 
the i-th element, the equilibrium condition for R1 at the 
first element can be obtained as: 
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AT implements this algorithm in the high-level physics 
function ��
�	��	���	� which calls three other AT 
functions to find all Ms and Bs in (6): 
�

��������� computes the closed orbit with classical 
treatment of radiation at each element.  
�

���
���	�����


����� computes the radiation 
diffusion matrix for an element, whose transverse 
magnetic field can be written as a multipole expansion. 
�

���	�	

�� computes the 6-by-6 transfer matrix 
through the element near the closed orbit. 

In MATLAB language, it takes only a few lines of code 
to assemble the last equations in (6).  

 

RingRingRing BRMMR +=   (7)  

Notice that we can write it as Lyapunov matrix equation 
commonly used in linear control theory.  

 
CRBAR −=+    (8) 

Our ��
�	��	���	 uses MATLAB control toolbox 
function ���� to solve it. ��
�	��	���	 also 
calculates the beam ellipse size and the orientation in the 
x-y plane. Figure 3 shows the result of such a calculation 
for the SPEAR ring with a few randomly tilted 
quadrupoles. This plot is produced by 
��
�	��	���	�	
� in ���������	
�� 
subdirectory. 

 Figure 3: Beam sizes � [m] 

 
Figure 4: Tilt angle of the beam ellipsoid [degrees].
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Figure 5: Orbit response matrix (uncoupled lattice) 
generated with 
����	��
 

2.3 Orbit Response Matrix 
Orbit response matrix Rij measures the change in the 

transverse orbit position at some location si, caused by a 
transverse kick (typically, with a corrector magnet) at 
some other location sj. The response matrix can be 
measured in a real accelerator or computed with an 
accelerator code.  

A popular technique [6] for linear optics determination 
fits the parameters in the model, such as the K-values of 
quadrupoles, corrector gains, and BPM errors, to 
minimize the difference between the measured and the 
model response matrix. Easy to use matrix tools, namely 
���, make MATLAB a good candidate for the fitting 
part. The numerical fitting procedure needs the model 
response matrix and its derivatives with respect to the 
fitted parameters. For this purpose it is convenient to use 
the AT function 
����	��
.  

Demo script 
����	��
�	
� generates the model 
response matrixes for the SPEAR lattice without coupling 
(Figure 5) and with coupling (Figure 6) caused by random 
tilts in one of the quadrupole families. Response matrixes 
are immediately available in MATLAB for visualization 
and for the model parameter fitting.  

Figure 6: Orbit response matrix (coupled lattice) 
generated with 
����	��
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