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Abstract
An analytical form of longitudinal and transverse

resistive wake potentials of point-like charge, moving
parallel to the axe of round pipe with the walls of finite
and frequency independent  conductivity is obtained. The
short range presentation of wake potentials by help of
uniformly converged series is received. The series
expansion for Gaussian bunch is obtained as well.

The analytical form of resonant term of wake potential
and simple integral form of the non-resonance one are
given for case of frequency dependent conductivity.

1.INTRODUCTION

An analytical form of impedance of infinite round pipe
with the resistive walls material is obtained by Chao [1],
and was simplified by Bane [2] by dropping out very low
and very high frequency terms:
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where: b is a pipe radius, ( ) 312
0 2πσcbs =  is a

characteristic distance of the pipe, c  is a light velocity,

σ  is a walls material conductivity, 2
0sb=α  and

0ks=κ  is a dimensionless wavenumber. The parameter

λ  in (1) for arbitrary frequency dependence of

conductivity is presented as 0
2 4 csiκπσλ = . The

wake potential is given by
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The results of integration of (2) in the complex plane for
the frequency independent (dc – ‘direct current’)
conductivity is the sum of resonance (given by help of
elementary functions) and non-resonance (given in the
simple integral form) terms [2]. The last term is
performed here to the analytical form.

For the frequency dependent (ac –‘alternating current’)
conductivity case on the base of numerical calculation
method, given in [2], we are brought the analytical form
for the resonance term and the simple calculated integral
for the non-resonance one.

2. DC CONDUCTIVITY

2.1. Wake Function
The longitudinal and transversal wake functions in the

dc case may be presented in form of expansion by the

longitudinal ( )nzw .  and transversal ( )nrw .

&
 multipole

moments [2]:
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In (4): 100 ==γδ , ( ) 21,2 00 +== >> nnn γδ ;

φφφ e
&,, 1  and rerr

&,, 1  are the radiated particle offset and

the test particle transverse coordinates and corresponding

unit orts. The argument nu is equal to 0
32 ssnγ .

The integrands in (6) may be transformed:
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After integration one obtain:
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where ( ) ( ) ( )iserfcss −−= 2expξ  is a complex error

function [3]. This presentation is equivalent to the
obtained in [2], but is a faster calculated and due to its
infinity times differentiability may be expanded in series:
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Figure 1. Functions ( )sf z  and ( )sfr , calculated exactly

(solid) and by 5, 10 and 15 terms of expansion (9)
(dashed).

The consecutive terms of series (9) has an alternative

signs ( 0,0,0 1 <>< +kkk dcd ) and decreases by the

module with the number increasing  (Laibnitz series) and

uniformly converged. In Fig.1 the functions ( )sf sz , ,

calculated exactly by help of formulae (8) and by the
series (9) interrupted on different steps, are plotted.

1.2. Gaussian Bunch
The wake functions for the bunch with the arbitrary

charge distribution may be obtained from (4) by help of

substitution instead of functions ( )nz uf  or ( )nr uf  their

convolutions with the bunch charge distribution function.
Thus, for the Gaussian bunch:
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The expansion for the comparatively small ζ  ( )2≥ζ
may be obtained by putting the wake function series (9)
into expression (10).
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Figure 2. The normalized longitudinal resistive wake

function, 5.20 =szσ . Dotted curves plotted by help of

expansion (11) with different terms of sum. These curves
are detached from the different parts of the directly
numerical calculated wake potential curve (dot-dashed).
Also shown solid curve is calculated by help of the first
term of expansion (12). The curves included second, third
and forth terms of expansion (12) are coincided (in the
presented scale) with the exact calculated wake potential
curve (dot-dashed). The difference of these curves is
shown in the next figure (Fig.3).

where ( )xaU ,  is a function of parabolic cylinder [3].

The several first terms of this expansion give a good
coincidence with the directly integrated expression (10)
for the case of comparatively small ζ  (Fig.2). The

solution for the arbitrary values of σ0
~s  may be

obtained by help of insertion in (10) wake function in the
form of (8) and by parts integration. The result is a series

expansion by positive degree of zs σ0
~ :

( ) ( )∑
∞

=

−

−

−

±−

−−













−−=
1

2

~

13

13

23

23
23

3

3 2

~2

1~
~2k

z

k

k

k

k

k

k

e
zd

d
zQ

zd

d
zF

π
ζζ( ,

( ) ( ) ( ){ }44 2
41

2
41

42

zIzIezzQ z ±±= −
−

± (12)

with positive sign for 0~ >z and negative one for 0~ <z ;

( )zI 41±  are the modified Bessel functions [3]. The main

term of this expansion is equal to obtained by Piwinski
[4] low frequency approximation:
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On Fig.3 is represent the series consistent convergence to
the exact calculated with the term number increasing.
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Figure 3. The presentation in detail of approximation (12)

convergence to the exact calculated result; 5.20 =szσ .

3. AC CONDUCTIVITY

In ac case the frequency dependence of conductivity is

( )ωτσσ i−= 10 , where 0σ  is the static conductivity

and τ  is the relaxation time of the metal. After changing

of designations: αλλ i−=~
, ( )Γ−= 22 ~

2
~ λλκ i  and

0scτ=Γ , the impedance (1) versus λ~ may be rewrite

as follows:
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with the four roots of denominator:
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The first two of roots are real and another two are

complex (the term +e  is imaginary for arbitrary 0>Γ ).

In the dc limit ( )0=Γ : −∞=1
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31
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corresponding values of variable κ : ×= 2
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Γ−× λ  have negative imaginary parts. The

resonance term is the sum of two residues (Fig.4):
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At 0→Γ  this gives the monopole resonant term of the
longitudinal potential for dc case [2]:
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The term, arises from the integration over κ along of the
both sides of cut from 0=κ  up to Γ−= iκ (Fig.4)

may be presented as follows:
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function for dc conductivity at 0→Γ .
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Figure 4. The contour of integration.

4.CONCLUSION

Obtained results were used for the TESLA-FEL
transport line resistive wakes influence calculation [5].

The results of this report can be useful for wide range
of the resistive wake field dominated effects with dc and
ac conductivity of the wall material.

5.REFERENCES

[1.] A.W. Chao, “Physics of Collective Beam Instabilities
in High Energy Accelerators”, New York, John
Willey & Sons, Inc., 1993.

[2.] K.L.F. Bane and M Sands,. The Short-Range
Resistive Wall Wakefield”, SLAC-PUB-95-7074,
Dec. 1995.

[3.] M. Abramovits and I.A Stegun., “Handbook of
Mathematical Functions”, Number 55. Department of
Commerce, 2 edition, 1964.

[4.] A Piwinski, “Wake Fields and Ohmic Losses in
Round Vacuum Chambers,” DESY HERA 92-11,
May 1992.

[5.] M.I. Ivanian, V.M.Tsakanov, “Summary of the
Resistive Wake-Field Effects in TESLA-FEL
Transfer Line”, TESLA-FEL 2000-25, Dec. 2000.

3196

Proceedings of the 2001 Particle Accelerator Conference, Chicago


