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THE ANALYTICAL TREATMENT OF RESISTIVE WAKE IN ROUND PIPE

M.lvanyan', V. Tsakanov, YerPhl, Yerevan, Armenia

Abstract

An analyticd form of longitudinal and transverse
resistive wake potentials of point-like charge, moving
parallel to the axe of round pipe with the walls of finite
and frequency independent conductivity is obtained. The
short range presentation of wake potentials by help of
uniformly converged series is received. The series
expansion for Gaussian bunch is obtained as well.

The analytical form of resonant term of wake potential
and smple integra form of the non-resonance one are
given for case of frequency dependent conductivity.

1.INTRODUCTION

An analytical form of impedance of infinite round pipe
with the resistive walls material is obtained by Chao [1],
and was simplified by Bane [2] by dropping out very low
and very high frequency terms:

Z(k)=2/(cbs,[A/k —ika/2),
where: bis a pipe radius, S, =(Cb2/27'[0)‘/3 is a
characteristic distance of the pipe, C is a light velocity,
0 is a walls materia conductivity, @ =b/s? and
K =ks, isadimensionless wavenumber. The parameter
A in (1) for arbitrary frequency dependence of
conductivity is presented as A® = 47mdk/cs, . The
wake potentid is given by

W,(5)= (zmo)-lcj;z (x

The results of integration of (2) in the complex plane for
the frequency independent (dc — ‘direct current’)
conductivity is the sum of resonance (given by help of
elementary functions) and non-resonance (given in the
simple integral form) terms [2]. The last term is
performed here to the analytical form.

For the frequency dependent (ac — aternating current’)
conductivity case on the base of numerical calculation
method, given in [2], we are brought the analytical form
for the resonance term and the smple calculated integral
for the non-resonance one.

)e—iK S/SOdK (2)

2. DC CONDUCTIVITY

2.1. Wake Function
The longitudinal and transversal wake functions in the
dc case may be presented in form of expansion by the
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) and transversal (W ) multipole

r.n

longitudina (W,
moments[2]:

(6= 3 e, (57)

00

WZ,I’ (S’ F) = ZWI’,H. (S’ F),
o=

©)
where
- 4 .
w(s7) == Hy, .o Joosnlo-1).
o (o) = ANy
W)= 2R e
(cosnlp-@)e ~sinnlp-e,)
with
f,(u)= ge’“ cos(\/éu)— ﬁ 1, (u) ()

f.(0)=2e*(3sin() cos(f )-221, ),
where

_ o Xze—xzu _°° e—xzu
Iz(u)—J)’ & +8 dx, Ir(u)—J)’X6+8dx. (6)
In (@): 0,=Y,=1.8,.0 =2, V.o =(n+1)/2;

¢,¢,€, and r,1,,€ aretheradiated particle offset and

the test particle transverse coordinates and corresponding

unit orts. The argument U, isequal to S/SO
Theintegrandsin (6) may be transformed:

NG A 1 & A
x*+8 &x+([B ] x°+8 &x*+(B,f
A =2m =16, AL, = 2%, =17 iv3)12,
B, =v2, B,,={¥iv3)2. ™

After integration one obtain:
f,(s) :{4e‘5 cos(\/és)+ & (I\/Z_S)—
3 (e‘”/ 6\/2_8)‘5 (— e 6\/2_3)/ 3},
f,(s) :{Ze‘s(\/ésin(\/és)—cos(\/gs))% Q\/Z_S)+
e '5¢ (ei /6 23) +e"8& (— g 7e \/2_3)}/ 3,
where & (S) = exp(— Sz)er fc(— iS) is a complex error
function [3]. This presentation is equivalent to the

obtained in [2], but is a faster cdculated and due to its
infinity times differentiability may be expanded in series:
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Figure 1. Functions f, (S) and f, (S) calculated exactly

(solid) and by 5, 10 and 15 terms of expansion (9)
(dashed).

The consecutive terms of series (9) has an alternative
signs (d, <0, ¢, >0,d,,, <0) and decreases by the
modul e with the number increasing (Laibnitz series) and
uniformly converged. In Fig.1 the functions fz,s(s)-

calculated exactly by help of formulae (8) and by the
series (9) interrupted on different steps, are plotted.

1.2. Gaussian Bunch
The wake functions for the bunch with the arbitrary
charge distribution may be obtained from (4) by help of

substitution instead of functions fz(un) or f, (un) their

convol utions with the bunch charge distribution function.
Thus, for the Gaussian bunch:

Fz,r<z)=<zn)-ﬂ2} f,,(60)

Here § = so/y”’z”-z/a S=sl0,,{(=0,/5.

The expansion for the comparatively small { (Z > 2)

may be obtained by putting the wake function series (9)
into expression (10).

(z-s)

(10)

e /407 o«

a1l
+d, 37 r(3k -2 (3k -1 - 7/0,)),

F(2)= M3k +1u §3k+%,—2/02§+ (11)
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Figure 2. The normalized longitudina resistive wake
function, 0, /s, = 2.5. Dotted curves plotted by help of

expansion (11) with different terms of sum. These curves
are detached from the different parts of the directly
numerical calculated wake potentia curve (dot-dashed).
Also shown solid curve is calculated by help of the first
term of expansion (12). The curves included second, third
and forth terms of expansion (12) are coincided (in the
presented scale) with the exact calculated wake potential
curve (dot-dashed). The difference of these curves is
shown in the next figure (Fig.3).

where U (a, X) is a function of parabolic cylinder [3].

The several first terms of this expansion give a good
coincidence with the directly integrated expression (10)

for the case of comparatively small { (Fig.2). The

solution for the arbitrary values of 3,/0 may be

obtained by help of insertion in (10) wake function in the
form of (8) and by parts integration. The result is a series

expansion by positive degree of §,/0,:
Z ) d3k -2 1 E

Z 23k %3/ d"'3k 2Q+ \/_ d"'3k l E
Q.(2)= Ee i 282,208

with positive sign for Z > Qand negative onefor Z <0;
I +1/4 (Z) are the modified Bessel functions [3]. The main

term of this expansion is equal to obtained by Piwinski
[4] low frequency approximation:

—Q+() RCHC RSO0
F1,0)1,,0)} u=2/4

On Fig.3 is represent the series cond stent convergence to
the exact cal culated with the term number increasing.
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Figure 3. The presentation in detail of approximation (12)
convergence to the exact calculated result; 0, /s, = 2.5.

3. AC CONDUCTIVITY

In ac case the frequency dependence of conductivity is
0 =0,/(l-iwr), where g, isthe static conductivity
and T isthe relaxation time of the metal. After changing
of designations A =—iA/a, K = iXZ/(Z—XZF) and
M= CT/S0 , the impedance (1) versus X may be rewrite
asfollows:

2 Al-ar)

Z=- - - (13)
cbsa (- A2r f +4°/2

with the four roots of denominator:

A,=-18r?-g/ar2Fe /ar?,

\,,=-1& 2+ g/aA?Fe,/2r?, (14)

g =vJa+b, a=116+8%/3, f =-1/8-8r°

b=3"r*(par?/d +d) e, = (2a-b f /ag)

3
d= 2_]/3(27 +10241° + 3\/5\/ 27+ 2048F3)V .
The firg two of roots are real and another two are
complex (theterm €, isimaginary for arbitrary " >0).
In the dc limit (F=0): A =-w, A, =-2 and

34—1+|\/_

corresponding values of variable K :K,,

last roots the

—_:32
_|/\3'4><

Only for two

x(z—}\'§4r)l have negative imaginary parts. The
resonance term is the sum of two resdues (Fig.4):
. 8 < l-arae s
W)= 2, (ar2az+ 151, —8r)
j

At [ - O this gives the monopole resonant term of the
longitudinal potential for dc case [2]:

WA(S) ., =-16/3b>e 9> cosl\/3s/s, )

The term, arises from the integration over K along of the

(15

both sides of cut from kK =0 up to K =—i/I (Fig.4)
may be presented as follows:
1 X2+ x°r -2 +X22
W (s)= 6V2 ¢ ) e X dx

b’ ‘!8 L+ x2r) +x°
and tends to the corresponding non-resonant term of wake
function for dc conductivity at I — O.
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Figure 4. The contour of integration.
4.CONCLUSION

Obtained results were used for the TESLA-FEL
transport line resistive wakes influence calculation [5].

The results of this report can be useful for wide range
of the resigtive wake field dominated effects with dc and
ac conductivity of the wall material.
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