
STUDY OF SURFACE WAVE PROPAGATION IN A COAXIAL
WAVEGUIDE WITH A PERIODIC SLOT ARRAY

D. Alesini�x, C. Garganesex, F. Iannazzox, M. Migliorati�x, L. Palumbo�x
� INFN - Laboratori Nazionali di Frascati, 00044 Frascati, Italy,

x University of Rome “LA SAPIENZA”, Dip. Energetica, 00161 Rome, Italy.

Abstract

In this paper we study the electromagnetic fields prop-
agating in a coaxial waveguide with periodic slots in the
inner conductor. We have performed a theoretic analysis
by using the moment method, and have obtained a disper-
sion curve and an expression of the field components as a
function of the geometrical parameters. The calculations
show a slowing down of the phase velocity due to the slot
array. We have then compared the predictions with the re-
sults of MAFIA simulation code and with measurements
on a copper prototype.

1 INTRODUCTION

In order to study the coupling between the beam and the
wake fields propagating in structures like the LHC liner [1],
where pumping holes allow to create high vacuum in the
beam pipe, we have analysed the electromagnetic (e. m.)
fields of a coaxial waveguide with periodic slots in the inner
conductor.

The theoretic study, described in the second section, has
been performed with the moment method [2], and has al-
lowed us to obtain a dispersion curve and an expression of
the field components as a function of the geometrical pa-
rameters. The results show a slowing down of the wave
phase velocity due to the slot array. We have applied the
method to a case in which the slot dimensions produce
an appreciable variation of phase velocity, and in the third
section we have compared the results with those obtained
with MAFIA simulation code [3]. Due to discrepancies be-
tween the two approaches, we have performed some mea-
surements on a copper prototype, which, as shown in the
fourth section, confirmed the MAFIA results. We end the
paper with possible explanation of the discrepancies with
the theoretic predictions.

2 THE MOMENT METHOD

The geometry of the structure is shown in Fig. 1. Let us
consider a surface wave propagating on an infinitely long
coaxial cable with the time dependenceej!t. Each surface
wave satisfies Maxwell’s equations and all the boundary
conditions. The source is located in the regionz =1 and
need not to be considered explicitly.

The slot spacing isp, the slot length isl and the width is
w. The inner conductor has radiusb while the outer con-
ductor has radiusc. The conductors are assumed to have
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Figure 1: Geometry of the structure.

perfect conductivity and negligible thickness.
For each region I and II of Fig. 1, it is convenient to de-

fine electric and magnetic Hertz vectors �e and �m, re-
spectively, that have only z-components in terms of cylin-
drical coordinate system (r, ', z). These Hertz vectors
must satisfy Floquet’s theorem to include the effect of the
periodic slot. Therefore we can write [4]
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where i is the region I or II, In and Kn are the mod-
ified Bessel functions of argument (�mr), with �m =p
�2m � k2 the radial propagation constant of the mth spa-

tial harmonic, �m = �0 + 2�m=p the axial propagation
constant, and k the wave number. Since Kn(x) ! 1 for

x ! 0, it must be B(I)
mn = 0 and D(I)

mn = 0 to have a finite
field everywhere.

In each region i the e. m. fields can be expressed as

E =rr ��e
+k2�e � j!�0r��m

H =rr ��m + k2�m � j!�0r��e (2)

Our aim is to study the surface-waves (�2
m > k2) to ob-

tain the constant propagation �0. In addition we determine
the coefficients A(i)

mn, B(i)
mn, C(i)

mn, D(i)
mn to study the field

structure of the surface wave. To this end we require, as
boundary conditions, that the tangential electric field in the
two regions must be equal to the tangential electric field in
the slots, which we call E(S)

' and E
(S)
z . Since the fields

are periodic functions in ' and z, we can expand them in
Fourier’s series. By using the above boundary conditions,
we get a linear system of equations which has the solu-
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tion [4]
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To obtain the longitudinal propagation constant � 0, we
use the Galerkin’s method [2]. We first expand the tangen-
tial components of the electric field in the slots as

E(S)
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where fi('; z) and gi('; z) are the basis functions. Their
choice depends on considerations about symmetries of the
structure. For simplifying the calculations we have con-
sidered only the first term of the expansion (I = 1) and
sinusoidal functions. As a result the fields on the slot be-
come
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that can be seen as a first term of a Fourier series expansion.
The only parameters to be determined now are the coef-

ficients A'
0 and Az

0 and the constant of longitudinal prop-
agation �0. To do that we use the conditions of match-
ing the tangential components of the magnetic field be-
tween the two region through the slots. By using then the
Galerkin’s method we get a linear homogeneous system of
equations [5]. The corresponding matrix determinant equal
to zero gives the longitudinal propagation constant � 0 as a
function of frequency.

The phase velocity is related to �0 through the relation
v = !=�0. In Fig. 2 we show the relative phase velocity
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Figure 2: Relative phase velocity variation: theoretic and
numerical results.

variation as a function of frequency for the case with di-
mensions: a = 19 mm, b = 25 mm, w = 8 mm, l = 35
mm, and p = 70 mm. The predicted variation can be rather
consistent, of the order of 6 - 7 % for a frequency of 1 - 2
GHz.

3 MAFIA SIMULATION RESULTS

In order to check the results obtained in the previous sec-
tion, we have evaluated the phase velocity of the slotted
coaxial waveguide using the MAFIA e. m. simulation code.
Due to the symmetry of the structure respect to the plane
' = 0 (Fig. 3) and since we are interested in the TEM-like
mode, we have simulated only half structure with a perfect
magnetic plane boundary condition. Furthermore, since the
structure is periodic, we have considered only one periodic
cell with periodic boundary conditions on the planes z=0
and z=p and different phase advances between these two
planes.
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Figure 3: Sketch of the simulated structure and MAFIA
meshgrid.

The considered structure is shown in Fig. 3. The char-
acteristic dimensions are the same of the previous section
with the exception of the inner conductor depth d that is
now 1 mm. The total number of MAFIA meshpoints is
50000.

The obtained relative phase velocity variation is plotted
in Fig. 2 as a function of the frequency.

These results differ from the theoretic ones by a factor
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Figure 4: Measurement set-up.

bigger than 60, and also the frequency dependence has not
the same behavior. In order to check the validity of the
simulations we have performed some measurements on a
copper prototype.

4 MEASUREMENTS

To measure the slowing down of the wave in the region
II, we have used the following method: we made a coaxial
resonator out of the coaxial guide by applying a short cir-
cuit at the ends of the guide. The resonance frequencies of
the resonator can be expressed as a function of the phase
velocity of the wave in the region II

fn =
vn

2L
n = 1; 2; ::: (7)

where L = 1043 mm is the length we have chosen for our
resonator.

The slot array changes the phase velocity and there-
fore the resonance frequency. Let us consider f (REF )

n and
f
(DUT )
n the resonance frequency of the nth mode for the

simple and the slotted resonator respectively. From the
measurement of the relative frequency shift, we obtain the
slowing down of the phase velocity [6]

f
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n

f
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n

=
c� v(DUT )

c
(8)

The measurement of the resonance frequency is obtained
from the jS21j curve as a function of frequency. For this
purpose we have used the Network Analyzer HP8753E.
The complete set-up is shown in Fig. 4. All the measure-
ments have been made for two structures of coaxial res-
onator: the resonator with no slot arrays (reference res-
onator), and the slotted coaxial resonator.

The geometrical parameters are the same as those used
in the MAFIA simulations. The inner and outer cylinders
of the resonators are made of copper; their ends have been
closed with a couple of aluminum rings which create two
short circuits at the terminal sections and assure the coaxi-
ality of the entire structure. In order to excite and reveal the
e. m. field in the region II, we have used two probes in the
middle of the resonator; for this reason we can study only

modes corresponding to odd multiples of the fundamental
resonance frequency. Furthermore we have fixed the alu-
minum rings with eight vices, to avoid eccentricities of the
inner conductor and to stabilize the measurements, since
the phase velocity variation predicted by MAFIA, and as a
consequence the frequency shift, was very small.

We made n = 40 repeated observations of the resonance
frequency f7 = 7f0. The average and the standard devi-

ation are f
(REF )

7 = 1007:48 MHz, s(REF )(fk) = 0:20

MHz for the reference resonator and f
(DUT )

7 = 1006:29
MHz, s(DUT )(fk) = 0:19 MHz for the slotted res-
onator. The experimental standard deviation of the mean
is s(REF )(f) ' 0:03MHz ' s(DUT )(f).

The measured frequency shift f
(REF )

� f
(DUT )

is then
1.19 MHz. If we assume the combined standard uncer-
tainty as a description of the uncertainty in the measure-
ment, we get an error of 0.04 MHz.

These results give, for the frequency of 1007.48 MHz,
a relative phase velocity of about 0.12 % which confirms
the MAFIA simulations. Our opinion is that the differences
with the theory are due to the approximated tangential elec-
tric field components that we used to describe the field in
the slots. In principle the moment method solution could
be more accurate using more Fourier series terms for the
field in the slots, but unfortunately this increases numerical
and computational problems.

5 CONCLUSIONS

In this paper we have studied the characteristics of
e.m. propagation in a coaxial waveguide with slots. Us-
ing the moment method we have obtained the dispersion
diagram of the fundamental TEM-like mode that we have
compared with the one obtained by MAFIA. The discrep-
ancy in the estimation of the wave slowing down between
the two approaches is probably due to the approximated
tangential electric field components that we have used to
describe the field in the slots. For a more accurate solu-
tion we should use more Fourier series terms for the field
in the slots, but unfortunately this increases numerical and
computational problems. We have also made e.m. mea-
surements on a copper prototype that confirms the slowing
down of the phase velocity predicted by MAFIA.
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