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Abstract
Self-consistent treatment of a space-charge-

dominated beam is generalized for the case of relativistic
bunch. Analytical derivations are performed in the limit
of a high brightness beam.  Shape of the stationary
bunch profile as well as expression for space charge
limited beam current are derived. Applicability of well-
known ellipsoidal model to bunched beam in RF field is
discussed.

1  INTRODUCTION
Emittance conservation and prevention of halo

formation in a high brightness particle beam in RF
accelerator are issues for existing and future high
intensity accelerator projects. If the beam is matched
with external focusing and accelerating field, its
distribution function as well as beam emittance are
conserved. Matched stationary beam does not exhibit
halo formation. Finding matched conditions for the
beam requires solutions of the self-consistent problem
for beam distribution function in 6-dimensional phase
space, which is typically possible only by numerical
methods. In Ref. [1] an approximate analytical solution
for self-consistent distribution of a bright bunched beam
was found. In this paper the solution is generalized for
the case of a relativistic bunch.

2  SELF-CONSISTENT SPACE CHARGE
POTENTIAL OF THE BEAM

General approach to find a stationary self-consistent
beam distribution function is to represent it as a function
of time-independent Hamiltonian, f = f(H), and then to
solve the Poisson's equation. The Hamiltonian for
particle motion in an RF field with continuous  focusing
is given by [2]

H = 
px

2  + py
2

2 m γ
  + pz

2

2 m γ3
 + q Uext + q Ub

γ2
,            (1)

Uext= E
kz

 [Io(kzr
γ

)sin(ϕs-kzζ) - sinϕs+kzζcosϕs] + Gtr
2

2
, (2)

where px and py are transverse particle momentum,

pz = p - ps and ζ = z - zs are deviations from
longitudinal momentum and position of synchronous
particle, respectively, Uext is the potential of an external
field, Ub is the space charge potential of the beam, E is
the amplitude of the accelerating field, ϕ s is the
synchronous phase, Gt is the gradient of the focusing
field, r is the particle radius, kz = 2π/(βλ) is the wave
number and λ  is the wavelength. In Ref. [1] the first
approximation for a self-consistent potential of the beam
was found:____________________________________
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Ub = - γ2

1 + δ
 Uext  ,                          (3)

where δ ≈ (kbϕ)-1 is a small parameter, inversely

proportional to the dimensionless beam brightness,
bϕ = 2I a2/(βγBIc εt

2), I is the beam current, k=1..3 is the
form factor,  a is the aperture radius, Ic = 4πεomc3/q is
the characteristic value of the beam current, B is the
bunching factor, and εt is the transverse beam emittance.
Equation (3) indicates that the stationary particle
distribution of the bright beam has such a shape that the
space charge potential is opposite to the external
potential. This phenomenon is known from plasma
physics as Debye shielding for nonneutral plasmas.

3  SELF-CONSISTENT BEAM PROFILE

A self consistent space charge distribution of a
matched beam in a channel is attained  from the
Poisson's equation:

ρ(r,ζ) = - εo [1
r
 ∂
∂r

 (r ∂Ub

∂r
) + ∂2Ub

γ2∂ζ2
] = 2εo γ2

1+δ
 Gt . (4)

The space charge density of a high brightness beam is
nearly constant within the bunch. From Eq. (3) it
follows, that, in the first approximation, space charge
potential of the beam is the same function of
coordinates, as the external potential, with opposite sign.
Therefore, equation Uext (r, ζ)= const gives the family of
equipotential lines of space charge field of the beam:

Io(kzr
γ

)sin(ϕs-kzζ) - sinϕs+ kzζcosϕs + Gtkz

2E
 r2= const. (5)

 However, in general case, bunch boundary does not
create an equipotential surface, therefore Eq. (5) does
not coincide with bunch profile. Instead of Eq. (5) we
use the following equation for beam boundary:

Io(kzr
γ

)sin(ϕs-kzζ) - sinϕs+ kzζcosϕs + C (kzr)
2=const. (6)

Equation (6) differs from Eq. (5) by inserted parameter
C, which is used to adjust bunch shape in such a way,
that self field of the bunch is approximately opposite to
external field.  Constant in right side of Eq. (6) is
determined from the condition, that longitudinal bunch
size is, in the first approximation, the same as for zero -
current mode, const = 2ϕs cosϕs - 2 sin ϕs [1]. Bunch
profile described by Eq.(6) reminds separatrix shape in
phase space (ζ, pz). Longitudinal space charge field of
this bunch repeats (with negative sign) the RF field
inside the bunch. In transverse direction, the space
charge forces are close to linear function of coordinate
and compensate for external focusing forces. For a long
bunch, βλ >> Rmax, the Bessel function can be
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Fig. 1. Coefficient C in bunch shape for ϕs = -30o as a
function of ratio of transverse and longitudinal gradients
of space charge field of the beam: a) γ  = 1, b) γ  = 3, c)
γ  = 6.

approximated as Io(χ) ≈ 1 + χ2/4, and equation (6) for
bunch boundary becomes:

R(ζ)= βλ
2π

(2ϕs- kzζ) cosϕs- sinϕs- sin(ϕs-kzζ)

C + 1
4 γ2

 sin(ϕs-kzζ)
.  (7)

Parameter C can be expressed as a function of ratio of
transverse, Gt

b, and longitudinal, Gz
b, gradients of space

charge forces inside the bunch, see Fig. 1.
According to Eq. (3), if space charge forces are

known, the opposite field defines required external field.
Gradients of external field are calculated from Eq. (2)  in
the vicinity of synchronous phase, kzζ << 1 , kzr << 1 .

Ut i l i z ing  expans ions  Io(χ)≈1+ χ2/4 a n d

sin(ϕs - ξ) ≈ sinϕs- ξcosϕs- (1/2)ξ
2
sinϕs, the external

potential is:

Uext=
Gzζ2

2
 + Gtr2

2
 [1- Gzsin(ϕs-kzζ)

2γ2Gtsinϕs

] ≈Gz
ζ2

2
 +Gt, eff r

2

2
,  (8)

where Gz is a longitudinal gradient of external field

Gz = 2π 
E sin ϕs

βλ
 ,                      (9)

and Gt, eff is an effective transverse gradient of external
field, depressed due to RF defocusing:

Gt, eff = Gt(1 - Gz

2 γ2Gt

) .               (10)

Taking into account Eq. (3), the relationships between
gradients of space charge field and that of external field
are

Gz
b= - ( 1

1+δ
)
2πE sin ϕs

βλ
, Gt

b=- ( 1
1+δ

)[Gt- 
πE sinϕs

γ2βλ
] . (11)

Eqs. (11) together with dependencies, presented in Fig.
1, uniquely define the shape of the stationary bunch for
given values of accelerating field, E, focusing gradient,
Gt, synchronous phase, ϕs, wavelength, λ , and beam
energy, γ.

4  MAXIMUM BEAM CURRENT

Performed study allows us to determine the
maximum beam current of bunched beam. The volume
of the bunch is calculated from

V = π R2(ζ) dζ
zmin

zmax

 = (βλ)3

8π2C
 f(ϕs) ,       (12)

where function f(ϕs) is given by

f(ϕs) = 3ϕs sinϕs - 9
2

 ϕs
2 cosϕs + cosϕs - cos2ϕs .  (13)

Total charge of the bunch is Q = ρ·V and the beam
current, I = Q c/ λ , is

I = Imax
1 + δ

 ,      Imax = Ic ( 
β3γ2

16π3C
) (Gt q λ2

m c2
) f(ϕs) ,    (14)

where Imax is a maximum beam current for infinitely
high brightness beam. Function f(ϕs), Eq.(13), is close to
the cubic function of the synchronous phase, ϕs

3.
Therefore, maximum beam current is proportional to the
cube of the synchronous phase. It is in qualitative
agreement with analysis, based on the well-known
ellipsoidal approximation to bunched beam [2].

Substitution of parameter δ into Eq. (14) gives an
explicit expression for beam current:

I = Imax (1 - εt
2

α 2
),                          (15)

where α defines normalized acceptance of the channel in
presence of transverse focusing and RF field:

α  = a β2 γ
8π3BC

 (Gt q λ2

m c2
) f(ϕs) .           (16)

Eq. (14) gives a unique expression for the beam current
limit (without separate transverse and longitudinal
limits) for every combination of E, Gt, ϕs and λ.

Fig. 2 illustrates particle-in-cell simulation results
of proton bunched beam dynamics with energy of γ = 3
and maximum possible current of Imax = 12A in the field
with E = 20 kV/cm, ϕs = - 30o, Gt = 20 kV/cm2, δ = 0.1,
λ = 3.7 cm. Gradients of space charge forces of the beam
obtained from Eqs. (11) are Gz

b = 16.4 kV/cm2, Gt
b =

17.3 kV/cm2. The ratio of gradients is Gt
b/ Gz

b = 1.05,
which corresponds to the bunch with parameter C = 1.2
(see Fig. 1b). Beam dynamics simulations show that
bunch shape is approximately kept constant.
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Fig. 2. Dynamics of relativistic proton bunched beam.

5  APPLICABILITY OF ELLIPSOID
MODEL

Let us discuss applicability of the well known
approximation of the bunch by uniformly populated
ellipsoid. In the vicinity of synchronous particle, where
external forces are approximately linear functions of
coordinates, external potential is given by Eq. (8).
Substitution of Eq. (8) into Eq. (3) gives for potential of
stationary bunch:

Ub = - ρ
2εo Gt

 (Gz ζ
2

2
 + 

Gt, eff

2
  r2),          (17)

where ρ is defined by Eq. (4). Potential, Eq. (17),
corresponds to uniformly populated ellipsoid. In a
moving system of coordinates, potential of ellipsoid, Ub

' ,
with space charge density ρ' = ρ/γ is

Ub
'  = - ρ'

2εo

  (Mζ '2 +  1 - M
2

 r2),              (18)

where ζ ' = ζ γ  is a longitudinal deviation from the center
of ellipsoid and M is a function of ratio of ellipsoid
semi-axes:

M(R, γ l) = R
2γ l

2
    ds

(R2 + s) (γ2l 2 + s)
3/2

 
o

∞

 .        (19)

After transformation to laboratory system, the beam
potential, Ub = γUb

' , is

Ub = - ρ
2εo

 [Mγ2ζ2 +  1 - M
2

 r2].                (20)

Comparison of Eq. (17) and Eq. (20) gives

M(R, γ l) = Gz

2 γ2Gt

 .                      (21)

Taking into account, that volume of ellipsoid with semi-
axes R and l is V= (4/3)π R2l , the maximum bunched
beam current, which can be carried by an ellipsoid is

Imax = Ic 2
3

 γ2(R
2l

λ3
) (Gt q λ2

m c2
).                     (22)

Since bunch with current, Eq. (22), completely
cancels for external field, expression (22) gives both
transverse and longitudinal current limit. Let us
substitute gradient of focusing field, Gt, by the value of

zero-current phase advance, σo = S/(βc)[q Gt /(mγ )]1/2,
of betatron oscillations per period S = Nβλ of a pure
focusing structure (without RF field). In presence of RF
field effective focusing gradient is Gt, eff = Gt(1 - M),
see Eqs. (10), (21). Therefore, zero-current phase
advance per period, σo,t , including both focusing and

RF defocusing terms is defined by σo,t
2  = σo2 (1 - M).

Phase width of the bunch can be approximately taken as
2ϕs and, therefore, half of bunch length is l = βλϕs/(2π).
With introduced values, Eq. (22) gives for the current
limit

Imax = 4
3

 mc2

Zo q
 βγ3 ϕs σot

2

(1 - M) N2
 (R

λ
)
2
,               (23)

where Zo = (cεo)-1 = 376.73Ω is the impedance of the
free space. Expression (23) is the well known transverse
current limit. Let us show that Eq. (22) gives also
longitudinal current limit. Substitution of parameter M,
Eq. (21), and amplitude of accelerating field E from Eq.
(9) into Eq. (22) gives for current limit:

Imax = 8π2

3Zo

 E sinϕs

βM
 R

2l
λ2

,                    (24)

which is well-known expression for longitudinal current
limit in RF filed. Performed analysis shows that
approximation of stationary self-consistent bunched
beam by uniformly populated ellipsoid is valid for small
bunches, R << βsλ , l << βsλ , while more general
analysis results in bunch shape, described by Eq. (6).
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