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Abstract

In this paper, a 3D nonlinear perturbative particle sim-
ulation code (BEST) is used to systematically study the
stability properties of intense nonneutral charged particle
beams with pressure anisotropy

(
P⊥ > P‖

)
. The most un-

stable modes are identified and their eigenfrequencies and
radial mode structure are determined for axisymmetric per-
turbations with ∂/∂θ = 0.

1 INTRODUCTION

It’s well known that in plasmas with strongly anisotropic
distributions (T||b/T⊥b � 1) a collective instability
may develop if there is sufficient coupling between the
transverse and longitudinal degrees of freedom [1, 2, 3].
Such anisotropies develop naturally in accelerators, where
the longitudinal temperature of the accelerated beam of
charged particles with charge q accelerated by a voltage V
is reduced according to T||bf = T 2

||bi/2qV ( for a nonrela-
tivistic beam). At the same time, the transverse temperature
may increase due to nonlinearities in the applied and self-
field forces, nonstationary beam profiles, and beam mis-
match. These processes provide the free energy to drive
collective instabilities and may lead to a detoriation of
beam quality.

2 LINEAR THEORY

Wang and Smith [2] investigated the kinetic stabil-
ity properties of an intense particle beam assuming a
KV distribution in the limit of large energy anisotropy
(T||b/T⊥b → 0) by expanding the solution of the linearized
Vlasov equation in a series of Gluckstern eighenfunctions
δϕn(r) = (1/2)[Pn−1(1 − 2r2/r2

b ) + Pn(1 − 2r2/r2
b )],

where Pn(x) is the nth order Legendre Polynomial. The
expansion yields a dispersion relation, expressible in terms
of an infinite matrix determinant. For long-wavelength
perturbations with k2

zr
2
b � 1, one-half of the modes

are identified as transverse (Tn) Glucksteren modes with
δϕ ∝ δϕn. The other half consists of modes correspond-
ing in the limit ν → 0 to an ordinary cold-beam longi-
tudinal mode (L1) with δϕ ∝ I0(kzr) inside the beam
and ω2 = (ω̂2

pb/2)(kzrb)2 ln(rw/rb), plus a less-known
class of “coupling” modes (Ln) with δϕ ∝ δϕn and
ω2 = [ω̂2

pb/8n(n+ 1)](kzrb)2
∫ 2π

0
(dx/2π)Pn(cos x). The

latter modes are the result of the interaction between trans-
versely oscillating particles and the longitudinal perturbed
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potential. Here, ν = ν0(1 − sb)1/2 is the depressed tune,
where sb = ω̂2

pb/2γ
2
bω

2
βb is the normalized beam intensity,

ω̂2
pb = 4πn̂be

2
b/γbmb is the plasma frequency-squared,

ν0 = ωβb is the transverse betatron frequency associated
with the applied focusing field, rb is the beam radius, and
rw is the radius of the perfectly conducting wall.

As a general rule, for a KV distribution, instability arises
in the regions of parameter space where two or more modes
interact resonantly. The transverse modes (Tn) are not sig-
nificantly affected by longitudinal perturbations, and there-
fore the instability due to their interaction is a consequence
of the fact that the KV distribution has a highly inverted
population in phase space [2, 3, 4]. The most dangerous
Tn − Lk instabilities are due to T2 − L1 interactions [2]
in the region where ν/ν0 � 0.44 with maximum growth
rate Imω/ν0 � 0.03, and to T2 − L2 interactions in the
region 0.2 ≤ ν/ν0 ≤ 0.32 with maximum growth rate
Imω/ν0 � 0.15. The latter mode has a much higher
growth rate due to the similar transverse structure of the L2

and T2 modes. The growth rate is a maximum for k 2
zr

2
b ≥ 1

in both cases.
To remedy the problem arising from an unphysical KV

distribution, Davidson and Strasburg [1] employed a warm-
fluid model to investigate the stability properties of intense
charged beams with pressure anisotropy[5]. The kinetic
and fluid descriptions predict instability for different ranges
of beam intensity. In the following section we compare
these results with the simulation results using the nonlinear
δf simulation technique [6, 7].

3 DESCRIPTION OF THE BEST
NONLINEAR δF SIMULATION CODE

The theoretical models described in Sec. 2 use simpli-
fied assumptions for the background distribution. In prac-
tice, the transverse distribution function is close to thermal
equilibrium with temperatureT⊥b, and the longitudinal dis-
tribution can be described by a drifting Maxwellian dis-
tribution with temperature T‖b � T⊥b. This distribution
is stable with respect to transverse perturbations [4]. For
an arbitrary equilibrium distribution one cannot solve the
stability problem analytically and must employ numerical
simulation techniques. To investigate stability properties
numerically, we use the nonlinear δf method [6] described
below, as implemented in the Beam, Equilibrium, Stability
and Transport (BEST) code [7].

In the smooth-focusing approximation, the transverse fo-
cusing force is modeled by Ffoc = −γbmbω

2
βbx⊥, where
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γb = (1 − β2
b )1/2 is the relativistic mass factor, and βbc

is the axial beam velocity. The solutions to the nonlinear
Vlasov-Maxwell equations are expressed as fb = f0

b +δfb,
ϕ = ϕ0+δϕ and Az = A0

z + δAz , where (f 0
b , ϕ

0, A0
z) are

known equilibrium solutions. The perturbed potentials sat-
isfy the equations [7]

∇2δϕ = −4πeb

∫
d3pδfb, (1)

∇2δAz = −4π
c
eb

∫
d3pvzδfb, (2)

where δfb(x,p, t) is given by the weighted Klimontovich
representation,

δfb =
Nb

Nsb

Nsb∑
i=1

wbiδ(x − xbi)δ(p − pbi). (3)

Here, Nsb is total number of beam simulation particles, Nb

is total number of actual beam particles, and the weight
function is defined by wb ≡ δfb/fb.

The nonlinear particle simulations are carried out by
iteratively advancing the particle motion, including the
weights they carry, according to

dxbi

dt
= (γbmb)−1pbi, (4)

dpbi

dt
= −γbmbω

2
βbx⊥bi

− eb(∇ϕ− vzbi

c
∇⊥Az), (5)

dwbi

dt
= −(1 − wbi)

1
fb0

∂fb0

∂p
· δ

(
dpbi

dt

)
, (6)

δ

(
dpbi

dt

)
= −eb(∇δϕ − vzbi

c
∇⊥δAz), (7)

and updating the fields by solving the perturbed Maxwell’s
equations with appropriate boundary conditions at the
cylindrical, perfectly conducting wall at radius rw. The
δf approach is fully equivalent to the original nonlinear
Vlasov-Maxwell equations, but the noise associated with
representation of the background distribution f b0 in con-
ventional particle-in-cell (PIC) simulations is removed.

4 SIMULATION RESULTS

Here we present the simulation results for a continuous,
anisotropic beam in a constant focusing field. The equilib-
rium distribution function is assumed to be

f0(r,p⊥) = n̂b

(2πγbmb)3/2γbT⊥bT
1/2
‖b

× exp
{
− (p‖−γbmbβbc)2

2γ3
b
mbT||b

}
× exp

{
− p2

⊥/2γbmb+γbmbω2
βbr2/2+eb(ϕ0−βbAz0)

T⊥b

}
, (8)

where n̂b is the beam density at r = 0, and T⊥b and
T||b are the transverse and longitudinal temperatures of
the beam particles. The equilibrium self-field poten-
tials (ϕ0, Az0) are determined numerically from Maxwell’s

equations [7]. It is also assumed that the beam is located
inside a grounded, cylindrical, perfectly conducting wall at
radius rw = 3rb, where rb = [〈r2〉]1/2 is the rms beam
radius. Random initial perturbations are introduced to the
particle weights, and the beam is propagated from t = 0
to t = 800ω−1

βb . The initial temperature ratio is taken to
be T||b/T⊥b = 0.04. The simulations are performed for
a wide range of normalized beam intensities ranging from
sb = 0.1 to sb = 0.95, and detailed stability properties
have been determined for the range of intensity parame-
ters satisfying sb ≥ 0.5 assuming axisymmetric pertur-
bations with ∂/∂θ = 0. Shown in Fig.1 is the time his-
tory of the density perturbation δnb =

∫
d3pδfb for nor-

malized beam intensity sb = 0.7. After the initial lin-
ear growth, the instability saturates at the moderately large
level |δnmax

b /n̂b| � 0.05.

Figure 1: Time history of the normalized density perturba-
tion δnmax/n̂b for beam intensity sb = 0.7 at fixed z and
r = 0.2rb.

The net change in the longitudinal momentum distri-
bution δFb(pz)/F̂0b at the conclusion of the simulation
is shown in Fig.2. Here δFb(pz) =

∫
d2p⊥d3xδfb and

F̂0b = n̂b/(2πγ3
bmbT||b)1/2. The formation of tails in ax-

ial momentum space in Fig.2 and the consequent saturation
of the instability are attributed to quasilinear stabilization.
Figures 3 and 4 show plots of the real and imaginary parts

Figure 2: Perturbed longitudinal momentum distribution
δFb(pz)/F̂0b at time t = 800ω−1

βb , for normalized beam
intensity sb = 0.7.

of the complex oscillation frequency ω versus normalized
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axial wavenumber kzrb. The instability has a finite band-
width with maximum growth rate Imω/ωβb � 0.02 at
kzrb = 2.5. The unstable mode structure is shown in Fig.5

Figure 3: Normalized eigenfrequency Reω/ωβb plotted
versus kzrb for sb = 0.7.

Figure 4: Normalized growth rate Imω/ωβb plotted versus
kzrb for sb = 0.7.

for kzrb = 2.5. The dispersion relation and mode structure
( Fig.5) are similar to the well-known longitudinal (L1)
mode for a cold beam [2]. For long wavelengths k 2

zr
2
b � 1,

the dispersion relation is linear with Reω proportional to
kzrb. For short wavelengths k2

zr
2
b � 1, the transverse

beam size is unimportant and Reω � 1.03ωβb. The de-

Figure 5: Radial mode structure of the unstable eigenfunc-
tion for kzrb = 2.5 and sb = 0.7.

pendence of the maximum growth rate (Imω)max/ωβb on

beam intensity sb is shown in Fig.6. The maximum growth
rate (Imω)max/ωβb � 0.038 occurs for sb � 0.8, with no
instability in the region sb ≤ 0.5.

Figure 6: Plot of (Imω)max/ωβb versus normalized beam
intensity sb.

Finally, in the present simulations, the instability is
found to be absent if the ratio of initial longitudinal and
transverse temperatures is greater than the threshold value
T||b/T⊥b = 0.07.

5 CONCLUSIONS

The BEST code [7], which implements the nonlinear δf
scheme, has been used to investigate the stability properties
of intense charged particle beams with large temperature
anisotropy (T||b/T⊥b � 1). The simulation results clearly
show that moderately intense beams sb ≥ 0.5 are linearly
unstable to short wavelength perturbations with k 2

zr
2
b ≥ 1,

provided the ratio of longitudinal and transverse temper-
atures is smaller than some threshold value. The mode
structure, growth rate and the onset of the instability are
qualitatively similar to what is predicted for a KV beam for
the unstable T2 − L1 mode interaction. In the nonlinear
saturation stage, the total distribution function is still far
from equipartitioned, and free energy is available to drive
an instability of the hydrodynamic type [1].
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