
New Multithreaded Code for Calculating Longitudinal Collective Instabilites
using Computers with Multiprocessors

C.Y. Tan∗, FNAL, Batavia, IL 60510, USA
Abstract

We have developed a new mulithreaded code with
pthreads for calculating longitudinal collective instabilites
on computers with multiprocessors. We have selected
pthreads as the basis for multiprocessing because it is
portable, as such we are able to port this code to Solaris,
IRIX and OS/2 platforms. We will demonstrate that when
there are four cavities and 36 bunches in the simulation, our
code shows a speed increase of > 3× compared to single
processor code when run on a symmetric multiprocessing
(smp) machine.

1 INTRODUCTION

There are many well established codes used in longitudi-
nal simulations of beam instabilities, like ESME [1], which
run on a single processor. With the introduction of com-
puters with many processors (multiprocessors) like SUN
Sparcs with four or more processors, it seemed to be a waste
not to use the other processors in our simulations. Mod-
ern workstationswith many processors are usually symmet-
ric multiprocessing1 and the vendors have written their op-
erating systems to support this architecture. This means
that the vendor has already written the appropriate libraries
which allow the programmer to easily write programmes
which can run on multiprocessors. The usual challenge
which faces the physicist is to come up with a parallel pro-
cessing algorithm which takes advantage of the hardware.
We will show in this paper that for longitudinal simulations
with many RF cavities, the parallel algorithm which we will
choose is very natural and indeed takes advantage of the
multiprocessor machine. The next challenge which we will
face is the choice of libraries and language. The choice for
us will again obvious: we will choose a library which is
cross-platform and an object-oriented language.

We will, in the rest of the paper, introduce the idea of
threads and the pipeline model used in the simulation. Plus
the speed increases compared with single processor code.

2 THREADS

A thread is defined as a sequence of instructions to be
executed within a programme. Most programmes are sin-
gle threaded code which consists of one thread of execution
which starts in main(). Before the invention of threads, the
UNIX way of doing things in parallel is to use the fork/exec
model. This model spawned several processes each a thread

∗ cytan@fnal.gov
1Symmetric multiprocessing (smp) means that all CPUs are treated the

same, as opposed to asymetric multiprocessing where some CPUs are spe-
cial and others which are slaves.

of execution which can then be run in parallel. However,
each new process that is created by fork/exec require the op-
erating system to make a child process from its parent pro-
cess by copying over the instruction, user-data and system-
data segments of the parent and then executing the child
process as well as the parent process. This method is ex-
pensive because of the overhead required for each process
creation. Furthermore, communication between parent and
child need external channels like pipes, sockets, memory
maps (mmaps) etc. because resources held by parent and
child are private and neither parent or child can peek into
each others resources without using these mechanisms. The
fork/exec model can therefore be thought of as many pro-
cesses each having its own thread of execution.

Contrast this with a multithreaded programme where
there is one process with many threads of execution. This
means that different parts of the same code can be execut-
ing in parallel. The advantages over fork/exec are imme-
diate : all threads share the same resources and the over-
head of creating a new process is eliminated. The downside
is that because all threads share the same resources, there
must be software mechanisms, like locks and semaphores,
which preserve the integrity of the data and prevent race
and deadlock conditions. For example, suppose there are
two threads A and B which use a piece of shared data. At
some point in the process, thread A updates the data, so
thread A must prevent thread B from reading the data be-
fore thread A completes the update, i.e. prevention of a race
condition. Furthermore, if a situation arises where thread A
cannot finish the update unless thread B reads the data then
we have a deadlock condition. This means that our appli-
cation is stuck in a never ending wait between threads A
and B. To prevent these type of problems, judicious use
of locks and semaphores is essential. Unfortunately, this
adds to the overhead of multithreaded code when compared
with single threaded code which means that there are sce-
narios where single threaded code will run faster than mul-
tithreaded code.

2.1 Pthreads

POSIX [2] threads or pthreads is a cross-platform imple-
mentation of threads whose programming interface is spec-
ified by IEEE POSIX 1003.1c standard (1995). This stan-
dardization allow us to port the code with minimal changes
to two distinct UNIX platforms: Solaris, IRIX and one PC
platform: OS/2. Although pthreads is highly portable, there
are some shortcomings. For example, a feature which we
have thought will be useful is the explicit specification of
the mapping between thread and CPU. This feature does
not exist in pthreads and thus under this programming en-

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3039

Proceedings of the 2001 Particle Accelerator Conference, Chicago

vironment, the programmer defers the dispatch of threads
to CPUs to the operating system. If the programmer re-
ally wants to force a thread to a CPU, (s)he must use non-
portable system calls.

3 MODEL

We will describe here the pipeline model used to paral-
lelize the longitudinalsimulation code. The pipeline model,
which is extremely similar to the Ford assembly line, is
shown in Figure 1. We start first with a computer with M
processors. For illustration, let us suppose that in our sim-
ulations we have 1 < n ≤ M RF cavities. We can natu-
rally place a single thread of RF cavity code on each CPU
as shown in Figure 1. We suppose that we have N bunches
numbered bunch0, bunch1,. . ., bunch(N − 1) for the sim-
ulation. At the start of the simulation, we put bunch0 into
RF Cavity 0 with the other bunches waiting to be processed.
Once RF Cavity 0 is done with bunch0, it is sent to RF Cav-
ity 1 and bunch1 is sent into RF Cavity 0. Both RF Cavity 0
and RF Cavity 1 can then work on their bunches in paral-
lel. Once RF Cavities 0 and 1 are done with their respec-
tive bunches, bunch0 goes to RF Cavity 2, bunch1 goes into
RF Cavity 1 and bunch2 goes into RF Cavity 0 where they
are again processed in parallel. As this process is repeated
for the remaining bunches, we can see that eventually all
the processors will be working in parallel. The RF cavi-
ties themselves form a pipeline and the bunches propagate
through this pipeline starting from RF Cavity 0 and move
towards RF Cavity(n−1) which is at the end of the pipeline.
The first bunch to reach the end is bunch0 which means that
bunch0 has completed one turn through the accelerator and
is ready to be fed back into the beginning of the pipeline
at RF Cavity 0 again. This is done ad infinitum for all the
bunches until the required number of turns have been met.

Figure 1: This figure shows the pipeline model used in the
simulation. Each RF cavity is placed on a CPU and each
bunch is evolved through each cavity like a pipeline.

The advantage of this model is that when there is more
than one CPU in the computer and more than one RF cav-
ity in the simulation we can efficiently utilize the computer
resources to speed up the calculations by placing a thread
on each CPU. However, when there is only one RF cavity
in the simulation, the overhead used to set up and maintain

the pipeline, which basically consists of one thread only,
will be much greater than single threaded code. This means
that the simulationwill run slower using multithreaded code
compared with single threaded code. Similarly, for the case
when there is only one CPU and many RF cavities in the
simulation, i.e. many threads and one CPU, there is also a
comparable slowdown.

It is also important to keep the pipeline from stalling.
Consider the case when there is only one bunch and many
RF cavities. Then all the RF cavities except one are sit-
ting idle in the simulation, thus again the thread overhead
overwhelms any advantage of using multiprocessors. We
can always tell that the pipeline is stalled because when the
number of bunches is increased with the number of RF cav-
ities fixed, the speed of the simulation will increase and tend
to an asymptotic limit which is when all the CPUs in the
pipeline are working with full steam.

Finally, it is also not too much of a stretch of the imagina-
tion to think of each RF cavity as an object which is mapped
to each CPU and each bunch is an object which is manipu-
lated by each RF cavity. Thus the natural language to code
the simulation in is in some object oriented language like
C++.

4 RESULTS

For amusement we show the results of top in Figure 2.
This shows that our programme bl is using 330% more CPU
than the next highest user thus leaving him in the dust! For
a definitive check of the speedups, we compare completion
times with single threaded code and multithreaded code and
saw> 3× increase in speed when we have four RF cavities
and 36 bunches in the simulation. Table 2 shows the actual
speed increase with timed results on a Sparc workstation
with six processors (unfortunately we can only use four, see
CONCLUSION for the reason) and running SunOS 5.6. We
define the speedup factor to mean

speedup factor =
wall-clock time with single thread
wall-clock time with multithreads

(1)

Notice from Table 1 that there is a cross-over point when
a single threaded simulation is faster than a multithreaded
simulation when we have two RF cavities and< 4 bunches
in the simulation. The single threaded simulation is faster
than the multithreaded simulation because the pipeline is
stalled from too few bunches.

The other extreme case is when we have more RF cavities
than CPUs, which is illustrated with the eight RF cavities
case, and even then, the multithreaded performance is still
much better than single threaded performance.

5 CONCLUSION

As can be seen from Table 1, the speedup factor is de-
pendent on the number of RF cavities as well as the num-
ber of bunches. Thus to determine whether there is an
advantage in doing a simulation with multiprocessors, we

3040

Proceedings of the 2001 Particle Accelerator Conference, Chicago

Figure 2: This shows the output of top which is used to
monitor CPU usage. As can be seen from the line con-
taining USERNAME cytan, our programme bl is using
332.8% CPU while other users are using < 100% CPU.
This particular machine has 16 CPUs and we are using
4 RF cavities and 36 bunches in the simulation.

Table 1: Comparison between Single and Multithreaded
Performance

#RF cav. # CPUs # bunches speedup factor
8 4 36 3.2
4 4 36 3.2
2 2 36 1.7
2 2 8 1.2
2 2 4 1.0
2 2 2 0.5

must first do a computation with a short simulation time to
determine which method is better before committing our-
selves. Furthermore, not only do we have to consider the
non-linear scaling between the speedup factor and the num-
ber of CPUs, there are also hard and soft speed limits which
prevent us from going infinitely fast

• A hardware limit which is the overhead in commu-
nications between processors. Even when we have
four available processors on the Sparc to simulate four
RF cavities, we do not get 4× increase in speed.
• A software limit put in by the system administrators

which prevent us CPU hogs from using more than four
processors.

Notwithstanding the above two limits, we have shown
that multithreaded code which runs on modern smp ma-
chines can indeed make our simulations run much faster and
clearly in the 21st century this is the way to go.

6 REFERENCES

[1] J.A. MacLachlan, http://www-ap.fnal.gov/ESME

[2] D.Y. Butenhof, “Programming with POSIX Threads”, Addi-
son Wesley Publishing Company, 1997.

[3] C.Y. Tan, “New Multithreaded Code for Calculating Longitu-
dinal Collective Instabilites using Computers with Multipro-

cessors”, Fermilab Technical Note, TM-2140, for more de-
tails.

3041

Proceedings of the 2001 Particle Accelerator Conference, Chicago

