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Abstract

The analysis of the electrodynamic properties of a com-
plete multi-cell accelerating structure using electromag-
netic numerical simulation codes is presently at the edge of
existing computer capabilities. To overcome this limitation,
a network representation is proposed which derives the
overall scattering transfer matrix of such multi-cell struc-
tures from single-cell data calculated using the commer-
cial finite-element code HFSS. For a constant-impedance
structure, computation of the eigenvalues of this matrix al-
lows dispersion diagrams to be obtained. In the more gen-
eral case, this formalism leads to a representation of the
coupled-chain of cavities as a set of cascaded non identical
multipoles.

1 INTRODUCTION

Several high-energy physics laboratories around the
world are engaged in the design of high-luminosity e +e−

linear colliders aiming at a center-of-mass energy equal
to or higher than 0.5 TeV. Most of the designs use high-
gradient, normal-conducting accelerating structures with
varying degrees of damping and detuning to reduce the un-
wanted effects of transverse wakefields.

An essential step in the design of these accelerat-
ing structures is the characterization of their electrody-
namic properties. Since the advent of modern computers, a
plethora of codes has been written which allow a fast deter-
mination of such parameters as excitation frequency, modal
field pattern, shunt impedance, quality factor as well as the
modal dispersion characteristics. For instance, to determine
the dispersive properties of periodic structures, a very pop-
ular method consists of computing the eigenfrequencies of
a cavity composed of a set of identical cells terminated at
both ends by open-circuit or short-circuit boundary condi-
tions with electromagnetic codes such as SUPERFISH [1],
URMEL [2], etc. The accuracy of the results obtained with
these grid-oriented or finite-element codes, based on a spa-
tial discretisation of the cavity, are however tributary to the
dimensions of the problem to be analysed and to the num-
ber of mesh points used.

Another approach is to use the mode-matching tech-
nique or the method of moments. These techniques are
based on an analytical representation of the fields in sub-
regions of the accelerating structure where solutions of
Maxwell’s equations are given as an expansion of orthog-
onal and complete basis functions [3], [4], [5]. Imposing a

continuity condition of the transverse electric and magnetic
fields on the common discontinuity surfaces results in a set
of equations from which the associated scattering matrices
are deduced. The electrodynamic properties of the struc-
ture are then obtained by cascading the matrices associated
with each discontinuity and the smooth-walled sections of
waveguide. Although these techniques are very powerful
since the properties of a whole accelerating structure can in
principle be computed, they are restricted to structures of
simple geometry.

Electromagnetic codes such as the finite-element code
HFSS [7], which can compute the generalized scattering
matrix of a cavity with a complex geometry and well-
defined ports over a given frequency range, have been avail-
able for several years. This paper shows that a judicious use
of these codes combined with a suitable post-processing
enables some of the fundamental characteristics of acceler-
ating structures to be quickly calculated. The power of this
scattering matrix formulation is illustrated by using HFSS
to obtain the modal dispersion curves of prototype acceler-
ating structures that have been built and tested at CERN in
the framework of the CLIC studies [6].

2 THEORETICAL CONSIDERATIONS

A cell of a conventional accelerating structure is mod-
elled by a two-port network where each port may carry
N modes. The amplitude coefficients of the outgoing N
modal waves at each port are related to the amplitudes of
the incoming waves by the overall scattering matrix:

(
b(1)

b(2)

)
=

(
S11 S12

S21 S22

)(
a(1)

a(2)

)
.

a(1), a(2), b(1) and b(2) are column vectors associated with
the amplitudes of the N modes while S ij are N × N ma-
trices.

The scattering transfer matrix formulation lends itself
naturally to the characterization of an accelerating structure
when considered as a coupled-chain of cells and modelled
by cascaded networks:

(
b(1)

a(1)

)
=

(
T 11 T 12

T 21 T 22

)(
a(2)

b(2)

)
,

where the submatrices T ij are computed from the S ij with
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the following relations:

T 11 = S12 − S11(S21)
−1

S22,

T 12 = S11(S21)
−1

,

T 21 = −(S21)
−1

S22,

T 22 = (S21)
−1

.

The dispersive properties of accelerating structures of the
constant-impedance type can be calculated from the trans-
fer matrix formulation and the application of Floquet’s the-
orem. For an infinitely long periodic structure, Floquet’s
condition imposes the following relations between the am-
plitudes of the outgoing modal waves at the second port
and the amplitudes of the incoming modal waves at the first
port:

b(2) = exp (−γd) a(1),

where d is the period of the structure and γ = α+ jβ is the
complex propagation constant of the structure eigenmode.
Similarly, the amplitudes of the outgoing waves at the first
port are related to the amplitudes of the incoming waves at
the second port:

b(1) = exp (γd) a(2).

The combination of these relations with the definition of
the transfer matrix leads to the following system of equa-
tions:

[(
T 11 T 12

T 21 T 22

)
− λ

(
I 0
0 I

)](
a(2)

b(2)

)
= 0 ,

where the scalar variable λ = exp (γd) and where I is
the unit matrix. This system obviously constitutes an eigen-
value problem to be solved for the amplitudes and for the
propagation constants of the periodic accelerating structure
modes.

One of the approaches under investigation to damp the
higher order modes and to reduce the transverse wakefields
in the CLIC accelerating structure consists of coupling each
cell to a set of four identical radial waveguides. These
waveguides are dimensioned in such a manner that their
lowest cutoff frequency is between the upper frequency
of the fundamental passband and the lower frequency of
the first dipole band [8]. Such an arrangement can also be
studied using the above formulation, albeit with the follow-
ing minor modifications. Taking into account the symme-
try properties of the cell, it can be modelled by a three-port
network, the third port being associated with a waveguide.
The computation of the scattering matrix of this network
and the assumption that the waveguide is terminated by its
characteristic impedance lead to the same type of eigen-
value problem as above: the scattering submatrices related
to the third port need not be considered. Such a technique
is particularly useful for studying the dispersive properties
of heavily loaded structures under ideal conditions.

3 DISPERSIVE PROPERTIES OF CLIC
ACCELERATING STRUCTURES

Two structure geometries have been analysed to demon-
strate the use of this technique. The technique was first
tested on one of the first prototype CLIC accelerating struc-
tures built initially to work in the single-bunch regime.
It consists of a constant-impedance cylindrically-symetric
disk-loaded structure designed to operate at 29.985 GHz
in the 2π/3 mode. The cell geometry and dimensions are
given in [9]. Each port of the computational volume used
in HFSS was set in the middle of a cell, halfway be-
tween two consecutive irises. The calculation of the associ-
ated eigenvalue problem by using standard techniques fol-
lowed the computation of the scattering matrix. The dis-
persion characteristics covering the fundamental passband
are shown in Figure 1 for half of the first Brillouin zone.
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Figure 1: Dispersion diagram associated with the funda-
mental passband for the single-bunch CLIC accelerating
structure
In this case, it has been assumed that the structure is loss-
less and that only one mode, a TM01 waveguide mode, is
excited at each port.
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Figure 2: Dispersion diagram for the first two dipole pass-
bands of a modified cell of the TDS without coupled
waveguides
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Note that, since no propagation direction has been im-
posed, both + γ and − γ are true propagation constants for
the eigenmodes of the structure. In addition, both + γ +
j2πn/d and − γ + j2πn/d, where n is an integer, are
also solutions due to the multivalued nature of the loga-
rithm function.

The second example concerns a tapered damped ac-
celerating structure (TDS) [10]. Figure 2 shows the dis-
persion diagram associated with the first two dipole
passbands when no waveguide is coupled to the cell.
In the presence of damping with coupled waveguides,
the dispersion properties are modified in such a man-
ner that complex modes (modes with both α, the atten-
uation constant, and β not equal to zero) appears. For
moderately large coupling holes, these types of mode
are predominant in the band edge regions (Figure 3).
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Figure 3: Dispersion diagram for the first two dipole pass-
bands of a modified cell of the TDS with moderate wave-
guide coupling
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Figure 4: Dispersion diagram for the first two dipole pass-
bands of a modified cell of the TDS with strong waveguide
coupling

For a strong coupling (Figure 4), the dispersive properties
are clearly very different from the case without coupling
waveguides: attenuation is shown to take appreciable val-

ues within the whole frequency range shown.

4 CONCLUSIONS

The use of electromagnetic codes to compute the scat-
tering matrix of a unit cell of a constant-impedance ac-
celerating structure, modelled as a two-port network, each
port carrying a particular number of modes, combined with
appropriate post-processing, can provide modal dispersion
characteristics. The robustness of the technique has been
demonstrated on the CLIC single-bunch structure and on
a cell of a tapered damped structure. For a non-periodic
structure, the networks associated with each cell, including
those related to the input and output couplers, can be cas-
caded to provide its frequency response. This procedure, as
well as techniques to extract the transverse wakefields, are
at present under investigation.
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