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FOKKER-PLANCK SIMULATIONS OF BUNCHED BEAMS: HIGH-(Q) RF
MODES AND RESPONSE FUNCTIONS
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Abstract the beam’s response to externally applied voltage, which

does not include the voltage induced by the beam through
A computer code was developed to extend the methot?fe ring impedance and acting back upon the beam, is de-

of Warnock and Ellison for integrating of the non-linear__ . : .
Vlasov-Fokker-Planck equation for bunched beams (Thgcrlbed and applied to a stretched bunch in Sec. 2.

2nd ICFA Advanced Accelerator Workshop on the Physics

of High Brightness Beams, 1999). The code handles ar- 2 BEAM RESPONSE FUNCTIONS

bitrary radio-frequency potentials and highimpedances

and is used to study instabilities in stretched bunches. This A bunch’s longitudinal response to an external excitation
paper describes how high+esonant rf modes are incorpo- is determined by its response to the total field in the ring,
rated into the code. A method by which this time-domairtermed the beam transfer function (BTF) [11, 12], and by
code is used to calculate beam response functions, whighe field the bunch induces in the ring that in turn acts back
are response functions that include the beam acting bagk the bunch. The induced field arises from the ring’s lon-
on itself through the ring impedance, is also described angitudinal impedance. This response to an external excita-

applied to stretched bunches. tion is here termed the beam response function (BRF) and
is useful for measuring the environment of the bunch, i.e.,
1 INTRODUCTION the longitudinal impedance.

Codes that simulate bunches in the time domain have the
Simulation of bunches in storage rings have been usgsbtential for providing a means to compute the frequency-
to study the limiting behavior of instabilities. Most com- domain BRF of a bunch. In a linear system, a frequency-
mon is the simulation of instabilities driven by broadbandjomain response function is the Fourier transform of an ap-
impedance (short-range wakes) [1, 2, 3]. Simulation of inpropriately defined impulse response. A time-domain code
stabilities driven by highg impedances is also done [4]. can readily calculate impulse responses since the impulse
The simulations assume that the bunches are evolving i@sponse is the evolution of the bunch from the appropriate
a harmonic radio-frequency (rf) potential. These studiegitial condition at some starting time. So the problem is to
have shed considerable light on the limiting of these instajetermine the initial condition in the function space and the
bilities and on relaxation phenomena. These studies hawurier transform appropriate to determine the frequency-
also highlighted the limits of linearized treatments of co-domain response function of interest—in this case the BRF.
herent modes and frequencies in bunched beams [5, 6, 7¥his is the task of this section.

Two extensions of Warnock and Ellison’s (W & E) [1]  Both the pickup and kicker are assumed to be located
methods for the integration of the Vlasov-Fokker-Plancky the ring at azimuthal anglé = 0. We first consider
(VFP) equation were developed, one that permits simulahe evolution of transients and impulse responses in stable
tion with non-harmonic rf potentials for Landau dampingpynches. One applies a voltaés; t) to a bunch with the
and lifetime improvement [8, 9] and a second that perproperty thafl” goes to zero at = —oco. The co-moving
mits the inclusion of highg resonances with their long- coordinates is related tot and6 throughf = wot + ¢.
range wakes, as well as a broad-band impedance, in th@e initial/boundary condition is thak is the stationary
ring impedance. Although the former is a significant exajssinski distribution [13f att = —oco. The bunch then

tension of W & E’s methods and is essential for the studyyolves according to the linearized VFP equation giving a
of the limiting of instabilities of stretched bunches [7], it is perturbed distribution

not discussed here [10] due to space limitations. The latter
is discussed in Sec. 3. A third computational method that i(§l1,(¢ pit) = U(h, p;t)—To(h, p;t) = Buep {6(£) f(4)}
not an extension of W & E’s methods was also developed. =~ ” ” (13
It permits the calculation of frequency-domain beam reynere Buer is the linear operator mapping functions
sponse functions from time-domain simulations. AIthough/(¢. t) to phase space densitié® (¢, p; t) via the VFP
the beam’s response to thetal vo.ltage in the ring WaS  equation, angh is the momentum variable canonically con-
treated by Shaposhnikova [11], this method for calculatnggate tog with respect to the rf Hamiltonian. The operator
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a Fourier coefficient of the perturbed line density -60L
6pm(t) = pm(t) - pOm(t) = Rm {V(d): t)} (2) %\ -80;
where -100.
Rm = meBVFp (3) > -120t /W\/\
and pg . is the mth Fourier coefficient of the Haissinski % 140! T
line density. Now let the form of be < U
-160¢
Vg, t) = t 4 ‘
(6,1) = F(@)g(?) ) S
wheref is an arbitrary phase dependence gt — 0 as frequency  offset  (kHz)
t - —o0. Ry, induces a maH,, ¢ of the functionsy to
line densitiesip,,, 4(t) through Figure 1: Simulated beam response functi®nss, T's 55,

T3655, T5555, and Ti3555 (tOp to bottom) for a fU”y
Hy p {9()} = 0pmg(t) = R {f(#)g(t)}  (5) stretched 500-mA bunch in the National Synchrotron Light
) ) Source (NSLS) Vacuum Ultra-Violet (VUV) ring. Realis-
where thef dependence gb,, , is suppressed. Since thetically detuned main- and harmonic-cavity impedances are
system is linear and time independefit,, ; is a convolu-  ncluded in the simulation. The vertical scale has an arbi-
tion. trary scale factor. Machine parameters are given in Table

Spmlt) = [ dt Hoglt=t)glt) (6 1.

H is readily calculated for any giverf with a time- ~ _
domain simulation by specifying(t) = 6(¢) and simu- andC,, andS,,, are the Fourier transforms 6f,,,, and
lating H., ;(t) = 6pm 4(t). The use of the delta function at Syn-

t = 0 means that a non-zero initial conditiontat 0 that Equation Eq. (12) is the expression used to calcu-
depends ory is specified ford¥ and that the integration late beam response functiofis,,, from a time-domain
begins at = 0. code. Two calculations are performed starting with sta-

We now turn to the frequency domain. Frequencyble bunches with Haissinski distributions. One is given an
domain response functions are ordinarily measured by ekitial kick with cosn¢ phase dependence, and the other
citing the bunch by a voltag€ (t) « e~** with a steady with sin n¢ phase dependence. Each simulated line-density
sinusoidal time dependence at a frequency: 2 + nwo  function of time is Fourier transformed with respectitat
such thatlQ)| <« wp. Since¢ is a co-moving coordinate harmonicm and with respect to time to obtaifi,.,, Sy.r,
such that) = wot + ¢ = 1T (I is an integer) where the and combined according to equation Eq. (12).
pickup and kicker are located, this time dependence is Figure 1 shows an example of a beam response function

B _ —i(Qt—nd) calculated using the method described in this section. The
V =Vi(g;t) = Voe (7) impedance of the ring includes the main- and harmonic-
cavity accelerating-mode impedances with realistic detun-
ing for beam-loading compensation. The peak with smaller
offset is due to a dipole-like mode while the other peak is
due to a quadrupole-like mode.

whereV) is the peak voltage and= [T} picks up the slow,
and¢ the fast, time dependence of th€t). Inserting Eq.
(7) into Eq. (6), we get

5pme—i9t(t) = (Coun(t) + iSpmn(t)) 0 e™* % (8)
where theo denotes convolution and the two functions 3 HIGH-Q RF MODES

Cmn @ndSyy,, are defined Incorporation of highg rf modes in a time-domain sim-

_ ulation requires tracking the amplitude and phase of each
Cmn(t) = Hm cosno(t) and ) mode with time as the modes and the bunch evolve in con-
Smn(t) = Hp sinne(t) (10)  cert in the context of the VFP equation. Talman describes
an rf mode as a two-dimensional real vector evolving ac-
cording to a matrix equation describing the kicks the bunch
imparts to each mode each turn [14]. The method described
in this section uses a complex-valued quantity (phaggr)

5o o = Vo T () 6(w — O 11 represgnthg thg mode whose frequengyis near thehth

Pme-ioe (W) 0 (@) 8w ) (11) revolution line, i.e.w;, — hwy < wo, Wherewy is the rev-

where the beam response functibp,, (w) is olution frequency. The real rf field in the mode is

corresponding to the two terms@f*® = cos n¢+i sinng.
Each is calculated in a simulation providig@t) = §(t).
Equation 8 is readily Fourier transformed to

Tyn (W) = (Cran (W) + iSmn(w)) /27 (12) Vi (t) = RV, (t)ert] (13)
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andV/, (¢) has slow time dependence. This section quicklgode that tracks the particle distribution function in lon-

derives the discrete-time evolution Bf (¢). gitudinal phase space under the influence of a broad-band
The wake function for the rf mode is [15] impedance, was described to permit highmpedances to
be included in the ring impedance. A method for calcu-
Whi(t) = _Kn_ HQnt+on) 4 ¢ o (14) Igting bear_n response functiqns, which are response func-
cos O tions that include the beam-induced voltages acting back

on the bunch, was also described and demonstrated with a

whereI';, is th mping r .c. den h mpl
erel’;, is the damping rate, c.c. denotes the co peStretched bunch.

conjugate of the preceding ter®,, = wy, + il'y, kn, =

'y Ry, is the loss factor,R;, is the impedancew;, =
Vw? —T?, and 5 ACKNOWLEDGMENTS
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4 CONCLUSION

An extension of the methods for the integration of the
VFP equation developed by Warnock and Ellison [1], a
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