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Abstract

The longitudinal space-charge impedance for a particle
beam, for which the azimuthal extent is much longer than
the transverse, is typically expressed[3] in terms of a geo-
metrical factor, g0, which depends on the transverse charge
distribution and the geometry of the vacuum chamber. Ex-
pressions for g0 for a round beam in a concentric round pipe
are well known[3, 7]; and values may be given for the on-
axis impedance or for the impedance ensemble-averaged
over the beam cross-section. We have obtained analo-
gous expressions for the on-axis and ensemble-average
factors g0 for the case of an elliptical charge distribution
ρ(m, x, y) = [1 − (x/a)2 − (y/b)2]m inside a confocal
elliptic metallic pipe for the indices m = 0, 1, 2. How-
ever, our results are not completely general; for example,
the pipe cannot have the same eccentricity as the beam.

1 INTRODUCTION

1.1 Uniform elliptic beam in metallic enclosure

Given the 2D transverse electrical potential of a charge
distribution with a metallic boundary condition, it is a
straight-forward matter to write down a longitudinal geo-
metric factor. Laslett [5, 6] gave the direct and image po-
tentials for uniform elliptical beams enclosed by a variety
of boundaries from flat plates to hyperbolic pole-faces; and
these results could easily have been used to write g0 factors
circa 1977. [One result[4] does not satisfy ∇ ∧ E = 0.]

1.2 Non-uniform elliptic beam in free space

As noted by Kellogg[1], and Houssais and Sacherer [2],
for the case of free space in two-dimensions, the field in
the interior of a disc with elliptical equi-density contours
ρ(m, x, y) where m > 0 is an integer, may be evaluated
from definite integrals. For example the uniform ellipse
with unit charge, m = 0, has fields:

Ex =
x

a(a + b)π
and Ey =

y

b(a + b)π
. (1)

The fields in the case m = 1 have previously been given
by Lapostolle [8, 9] et al. Similar problems but with a con-
focal elliptic conducting boundary are much more difficult
and have to be treated by solving the Poisson equation.

1.3 Poisson’s equation

It is natural to solve an electrostatics problem by finding
a potential Φ which satisfies Poisson’s equation∇2Φ = −ρ
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and then forming E = −∇Φ. Solution of the Poisson equa-
tion is facilitated by adopting a coordinate system whose
level surfaces coincide with the boundary of the charge dis-
tribution and or a metallic enclosing boundary.

1.4 Elliptic confocal coordinates

We consider an ellipse with major and minor semi-axes a
and b, respectively; and with foci at ±c where c2 = a2−b2.
We adopt elliptic coordinates u, v which are related to the
cartesian coordinates x, y as follows:

x = c cosh(u) cos(v) and y = c sinh(u) sin(v) . (2)

The level surfaces of constant u and constant v are families
of ellipses and hyperbolae, respectively, with common foci.
These level surfaces are sketched in figure 1. The ellipse
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Figure 1: Level surfaces u = 1/2, 1, 3/2, 2 and v =
±π/6,±π/4,±π/3, etc. for ub = 1.

with major and minor semi-axes a, b is given by tanhu =
b/a and we denote this value

ub =
1
2

loge

[
a + b

a − b

]
= ln

[
a + b

c

]
. (3)

Similarly, the wall ellipse with semi-axes p, q is given by
uw = ln[(p + q)/c] or tanhuw = q/p (where p > q).

Let h2 = c2(sinh2 u+sin2 v). In the elliptic coordinates,
Poisson’s equation becomes:[

∂2

∂u2
+

∂2

∂v2

]
= −h2(u, v)ρ(u, v) . (4)

First consider the homogeneous equation when ρ ≡ 0.
Let us introduce the dual-complex symbols i2 = −1 and
j2 = +1 and identify the four directions 1, i, j, ij. Possi-
ble solutions of ∇2Φ = 0 are then the components of

ejueiv = (coshu + j sinh u)(cos v + i sin v) . (5)

Other possible solutions are Φ = 1, u, v; and Φ = u is of
particular interest because it is the far-field solution analo-
gous to ln r in polar coordinates.
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2 UNIFORM ELLIPTIC BEAM

We treat the case of constant density normalized to unit
charge, ρ = 1/πab. We follow, basically, the exposition of
Symon [10] excepting that we shall give a correct expres-
sion for the field in the exterior region, as is essential to
computing the geometric factor. The particular integral is

P.I. = −[cosh(2u) + cos(2v)]/[4π sinh(2ub)] . (6)

We must now find the interior complementary function and
the potential exterior to the beam Φext; both depend on
whether it is free space or a metallic boundary.

2.1 Free space

The potential functions are

Φint = P.I. + A1 cosh(2u) cos(2v) (7)

Φext = B1[cosh(2u) − sinh(2u)] cos(2v) + B2×u . (8)

The azimuthal (i.e. v-dependence) of Φext vanishes as
r → ∞ leaving only the logarithmic term u → ln(r), as
desired. The adjustable coefficients A1, B1, B2 are found
from the continuity of the field components Eu, Ev across
the boundary u = ub. The field is

E = −∇Φ = − 1
h

[
eu

∂

∂u
+ ev

∂

∂v

]
Φ . (9)

Because the field component Ev(ub, v) tangential to the
surface u = ub is not zero, so it follows that the bound-
ary of the charge distribution is not an equipotential.

The result for the field in the interior of the disc is found
to be identical with the components given above (1). The
field exterior to the disc is given by

Ex = x
[1 − tanhu]

(a − b)(a + b)π
, Ey = y

[coth u − 1]
(a − b)(a + b)π

.

(10)

2.2 Elliptic metallic boundary
We introduce a grounded, confocal elliptical conducting

wall along the level surface u = uw > ub. The particu-
lar integral is unchanged, but we shall have to find a new
complementary function and exterior potential to satisfy
the condition E = 0 at the wall. We take:

Φint = P.I. + A1 cosh(2u) cos(2v) , (11)

Φext = B1 cos(2v) cosh(2u − 2uw) + B2 × (u − uw) ,(12)

where we have arranged Φext to be zero at the wall. Con-
tinuity of the field across the boundary of the charge distri-
bution (u = ub) determines the adjustable constants. For
the interior region, cartesian components of the field are:

Ex = x
[−b + a tanh(2uw)]

a(a + b)(a − b)π
, Ey = y

[+a − b tanh(2uw)]

b(a + b)(a − b)π
,

(13)

which clearly shows that the induced charges affect the
field in the region enclosed by the conductor. Evaluation
of the formulae is facilitated by noting that tanh(2uw) =
2pq/(p2 + q2) ≈ 1. The confocal condition implies
c2 = p2 − q2 for the wall ellipse.

2.3 Geometrical factor

To make Φ continuous at u = ub we add a constant to
Φint. Because Φext(uw) = 0 it follows that the line in-
tegral

∫
E ·dl from any point u, v within the charged disc

to any point on the wall is simply Φint(u, v). From this it
follows that the space-charge geometrical factor is directly
proportional to Φint(u, v).

On-axis g0 Because of peculiar behaviour of the ellip-
tic coordinate system as u → 0, the beam centre is located
at (u = 0, v = ±π/2). Thus the on-axis impedance is

g0 = 4πΦint(0, π/2) = 2(uw − ub) + tanh(2uw) . (14)

Simplifying: g0 = 2 ln
[
p + q

a + b

]
+

2pq

(p2 + q2)
. (15)

The logarithmic term contains essentially the quotient of
the average radii of each of the two ellipses; and the alge-
braic term in p, q is approximately 1. Hence this result is
very similar to the “classical” formula g0 = 1 + 2 ln(p/a)
for a uniform circular beam and pipe.

Ensemble average g0 The on-axis space-charge
impedance gives the “worst case scenario”. A more rep-
resentative value is given by forming the ensemble average
over the beam cross-section.

〈g0〉 = 4π

∫ ub

0

∫ +π

−π

Φint ρ h2dudv . (16)

For the case of constant density, the ensemble average is

〈g0〉 = 2(uw−ub)+
1

2
tanh(2uw) = 2 ln

[
p + q

a + b

]
+

pq

(p2 + q2)
.

(17)
This expression is very similar to the ensemble geometric

factor 〈g0〉 = 2 ln(p/a)+(1/2) for a round beam and pipe.

3 BEAM WITH PARABOLIC DENSITY

We now consider the slightly more complicated case that
the charge distribution is ρ(1, x, y). The particular integral:

P.I. = A1[cosh 2u + cos 2v] + A2[cosh 4u + cos 4v]

+ A3[cosh 4u cos 2v + cos 4v cosh 2u] . (18)

We substitute into the Poisson equation and compare co-
efficients of cos(4v) cosh(2u), cosh 4u, and cosh 2u to ob-
tain three equations for the adjustable constants.

3.1 Free space
We take the potential functions:

Φint = P.I. + A1 cosh(2u) cos(2v) + A2 cosh(4u) cos(4v)

Φext = B1 cos(2v)[cosh(2u) − sinh(2u)] (19)

+ B2 cos(4v)[cosh(4u) − sinh(4u)] + B3u .

Continuity of the field components Eu, Ev at the bound-
ary of the charge distribution (u = ub) determines the ad-
justable constants A1 through B3.
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3.2 Elliptic metallic boundary
We introduce a grounded, confocal elliptical conducting

wall along the level surface u = uw > ub. We take:

Φint = P.I. + A1 cosh(2u) cos(2v) + A2 cosh(4u) cos(4v)

Φext = B1 cos(2v) cosh[2(u − uw)] (20)

+ B2 cos(4v) cosh[4(u − uw)] + B3 × (u − uw) .

where we have arranged Φext to be zero at the wall. Con-
tinuity of the field across the boundary determines the ad-
justable constants. To make Φ continuous at u = ub we
add a constant to Φint.

On-axis geometric factor The geometric factor is

g0 = 2(uw − ub) +
(9 sinh 6uw − 7 sinh 2uw)
6(cosh 2uw + cosh 6uw)

. (21)

This and subsequent expressions for g0 contain the same
logarithmic term (uw−ub) = ln[(p+q)/(a+b)] as in (15);
this term represents the “far field” which is independent of
the charge distribution so long as it is elliptic. However, the
“near field” (in the exterior region) does depend on the de-
tails of the charge distribution and feeds into the hyperbolic
functions term.

Ensemble average geometric factor After perform-
ing the integral (16) the result is

〈g0〉 = 2(uw−ub)+
(33 sinh 6uw − 31 sinh2uw)

[72 cosh 2uw cosh 4uw]
. (22)

4 BEAM WITH QUARTIC DENSITY

We now consider the more complicated case that the
charge distribution is ρ(2, x, y). Because we are only inter-
ested here in the geometric factor, we shall only consider
the case of a metallic enclosure and not the free-space case.
The particular integral is:

= A1(cosh 2u+cos 2v) + A4(cosh 4u cos 2v+cos 4v cosh 2u)

+ A2(cosh 4u+cos 4v) + A5(cosh 6u cos 2v+cos 6v cosh 2u)

+ A3(cosh 6u+cos 6v) + A6(cosh 6u cos 4v+cos 6v cosh 4u)

After substitution into the Poisson equation, compari-
son of the coefficients of cos 6v cosh 4u, cos 6v cosh 2u,
cos 4v cosh 2u, cosh 6u, cosh 4u, cosh 2u gives simple
equations for A6, A5, A4, A3, A2, A1, respectively.

4.1 Elliptic metallic boundary
We now find the interior complementary function and

the exterior potential function.

Φint = P.I. + A1 cosh(2u) cos(2v) + A2 cosh(4u) cos(4v)

+ A3 cosh(6u) cos(6v) (23)

Φext = B1 cos(2v) sinh[2(u − uw)] + B4(u − uw) (24)

+B2 cos(4v) sinh[4(u − uw)] + B3 cos(6v) sinh[6(u − uw)]

The adjustable coefficients are determined by the conti-
nuity of E across the charge boundary at u = ub. For the
purpose of evaluating g0, we make the potential continuous
across the boundary ub by adding a constant to Φint.

On-axis geometric factor

g0 = 2(uw − ub) (25)

+
(127 sinh(2uw) − 90 sinh(6uw) + 55 sinh(10uw)]

60[−1 + 2 cosh(4uw)] cosh(2uw) cosh(4uw)

Ensemble average geometric factor

〈g0〉 = 2(uw − ub) (26)

+
[986 sinh(2uw) − 675 sinh(6uw) + 365 sinh(10uw)]

600[−1 + 2 cosh(4uw)] cosh(2uw) cosh(4uw)

5 CONCLUSION

We have found the electrical potential for an elliptical
charge distribution ρ ∝ [1 − (x/a)2 − (y/b)2]m within
a confocal elliptical metallic boundary for the cases m =
0, 1, 2 and have obtained the corresponding on-axis and
ensemble-average geometric factors g0. We have noted the
influence of induced charges on the grounded conductor
upon the fields within, by comparison of the potentials with
the free-space case of no boundary. This paper is a much
abridged version of a TRIUMF design note[11] which con-
tains all the mathematical details and more discussion of
2D electrostatics problems. Formulae were generated with
the aid of MATHEMATICA[12].
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