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Abstract

Because the longitudinal space-charge forces within a lo-
cal rarefaction of the particle density in phase space are
focusing toward the centre of the perturbation, holes in
beams might be expected to be self stabilized below tran-
sition energy. We shall report measurements[7, 8, 9] made
at the CERN PS Booster (PSB) and computer simulations
that demonstrate the surprising longevity of such perturba-
tions on an unbunched charged-particle beam. The nega-
tive mass instability is not an explanation for this persis-
tent beam structure and the usual wave theory for pertur-
bations on unbunched beams (the Keil-Schnell criterion)
cannot explain their stability. The holes are solutions of
the non-linear Vlasov-Poisson equation for which we have
found self-consistency and stationarity conditions; these
have scaling-laws similar to the Keil-Schnell criterion.

1 INTRODUCTION

Localized longitudinal density perturbations on an un-
bunched charged-particle beam, have recently aroused in-
terest. Colestock[1] and Spentzouris[2] have reported ex-
perimental observations and Schamel[4, 5, 6] has made
theoretical studies and claims that the perturbations are
soliton-like and cannot be predicted by the linearized
Vlasov treatment used by Keil[3] and Schnell; we agree
with this claim.

1.1 CERN PS Booster Measurements

The PS Booster is a proton synchrotron cycling between
50 MeV and 1.4 GeV kinetic energy. The machine operates
with a harmonich = 1 fundamental rf system and in addi-
tion there is anh = 2 rf system and a high harmonic cavity
capable of generating harmonics fromh = 12 to h = 26 at
the injection energy. The Booster may also be operated in
storage ring mode at 50 MeV. Beam is injected over a few
turns (from 0.1 to 12) from a 200 MHz linac.

A wide-band beam pick-up and a fast digital oscillo-
scope with deep memory are available for recording bunch
shapes turn-by-turn. The data may be graphed as a wa-
terfall display: a “bird’s-eye” view of the conventional
mountain-range display. A grey scale, from black to white,
denotes relative particle density from most to least dense.
The instrument and software is called the “tomoscope”.

Linac bubbles The tomoscope was used to observe the
debunched beam after injection. Beam structure which we
refer to as “bubbles”, may survive for at least 50 ms. This

longevity cannot be ascribed to narrow momentum width:
no appreciable debunching of the bubbles implies an en-
ergy spread less than 5 eV, which is so small that the bub-
bles would be undetectable. The bubbles become more
prominent at higher intensity (figure 1).
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Figure 1:3.6× 1012 protons,
1-trace each 200-turns, verti-
cal span 31.7 ms.

Figure 2: 2.4 × 1012 pro-
tons, 1-trace/20-turns, span
3.3 ms; abscissa ns.

1.2 Periodic high-harmonic holes

With the fundamental rf turned off, the high harmonic
cavity can be used to introduce periodic holes with known
properties. For example,h = 13 holes having an energy
spread of some 190 keV were introduced into a beam of3×
1012 protons. With theh = 13 cavity switched off once the
empty buckets were introduced, the top and bottom of the
resulting holes should shear by a machine circumference
each milli-second. No such shearing was detected.

1.3 Momentum steering of holes

Because the longitudinal space-charge force is propor-
tional to the derivative of the line-current density, there is
no force between holes until they contact. However, if there
are differences in their central momenta, then holes will
move relative to one another. To test this idea, one im-
presses ah = 1 coherent energy modulation on the holes
(using small voltage of short duration). Figure 2 shows a
waterfall display after±60 keV modulation ath = 1; the
holes’ tracks converge in response to the modulation; and
though some holes collide none coalesce.

1.4 Momentum spread versus beam current

A simple theoretical model (section 1.5) predicts a def-
inite relation between the momentum spread of the holes
and the beam current, because of a fine balance between
shearing and focusing. The Booster experiments were
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adapted to test the theory usingh = 18 holes. In fig-
ure 3, the tendency for holes to shear due to their momen-
tum spread is well balanced against the focusing provided
by space-charge forces and the tracks stay sharply defined.
In figure 4, the momentum spread of the holes has been
enlarged and this enhances the shearing effect. Compari-
son of figures 4, 5 and 6, where the beam current is pro-
gressively increased, shows that space-charge focusing on
holes can overcome the shearing due to momentum spread,
leading to narrower and more self-sustained holes.
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Figure 3:1.8×1012 protons,
1-trace each 100-turns, span
16.7 ms,Vrf = 0.3 kV.
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Figure 4:1.8×1012 protons,
1-trace each 100-turns, span
16.7 ms,Vrf = 0.6 kV.
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Figure 5:2.4×1012 protons,
1-trace each 100-turns, span
16.7 ms,Vrf = 0.55 kV.
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Figure 6:3.2×1012 protons,
1-trace each 100-turns, span
16.7 ms,Vrf = 0.6 kV.

1.5 Simple theoretical model
Suppose that space charge is the dominant longitudinal

source of impedance. Letg0 be the geometrical coupling
parameter which depends on the ratio of beam and vacuum
pipe transverse radii. Letp andq be canonical momentum
and position. The Hamiltonian is of the formH = p2/2 +
Zλ(q) whereZ > 0 is the space-charge coupling constant
andλ is the line density. Self-consistency of a rectangular
void of momentum width2p̂ and length2b radians, leads to
the equilibrium condition:
(
p̂
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)2

=
g0

2πε0

(
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)2
1
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1
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1

2b
.

(1)
HereEs, Ps are energy and momentum,βsc = speed,
Rs =ring radius,N=number of particles,fempty andffilled

are the fractions of empty and filled phase space.

2 COMPUTER SIMULATIONS

Computer simulations were made using the LONG1D
tracking programme[10]. Two types of system were stud-

ied: (i) a periodic array of holes as the result of depositing
h = 15 empty rf buckets; and (ii) the behaviour of one or
two rectangular holes. Example GIF animations may be
found on the world-wide-web[11].

2.1 Periodic holes

Figure 7:4 × 1012 protons,
106 macro-particles.

Simulations were made in
which the beam was in-
creased from zero to4×1012

protons. The zero intensity
case shows the holes to de-
bunch in ≤ 0.5 ms. For
2 × 1012 protons, the holes
leave obvious tracks, though
space-charge is not strong
enough to prevent the holes
from widening. For4× 1012

protons (figure 7) the higher
space-charge forces provide
better focusing and the holes
do not widen.

2.2 Single rectangular holes

Simulations were made for the cases of beam current
one half and double the value required for stationarity. In
the former, the hole debunches because the shearing due
to momentum spread overcomes the space-charge focus-
ing. In the latter (figure 8) the hole quickly breaks up into
two smaller holes which thereafter appear stationary; the
momentum spread is unaltered, but the charge in each is
halved and so the stationarity condition is restored.

2.3 Collision of two holes

The case of two initially matched holes prepared with
slightly different central momentum and initially separated
in azimuth is shown in figure 9. The holes encounter and
slide past one another. They do not coalesce.

Figure 8: 1013 protons,
2.8 × 105 macro-particles.

Figure 9: 5 × 1012 protons,
2.2 × 105 macro-particles.

3 VLASOV EQUATION

We now examine the question of whether stationarity
conditions such as (1) can be obtained from solution of the
time-independent Vlasov equation. Letψ0 be a steady state
density function andψ1 some perturbation.
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3.1 Keil-Schnell type condition
Let Z represent the space-charge coupling to∂λ/∂q.

The Vlasov equation is linearized and the time derivative
set to zero, leading to

ṗ(ψ1)
∂ψ0

∂p
+ p

∂ψ1

∂q
= 0 ,

dp

dt
= −Z ∂

∂q

∫ +∞

−∞
ψ1(p, q)dp .

(2)
Hence the Keil-Schnell-type dispersion relation (for zero

modulation frequency) is:

Z

∫ +∞

−∞

1
p

∂ψ0

∂p
dp = +1 . (3)

The PV integral is negative/positive ifψ0 is locally a max-
imum/minimum. Thus for capacitive impedance (Z > 0),
an inverted bellψ0 is required to perpetuate a perturbation
below transition energy. Despite this prediction, the ob-
served stable holes in the PSB debunched beam occur for a
quasi-parabolic distribution with

∫
(∂ψ0/∂p)dp/p < 0.

3.2 Whether or not to linearize

When linearizing the Vlasov equation, it is customary to
state that the perturbationψ1 is small compared with the
steady state functionψ0 and that the producṫpψ1 can be
neglected. However, the Vlasov equation is not concerned
with the absolute amplitude of functions, but rather it is
obsessed throughout with derivatives. Thus it is not the rel-
ative size ofψ0 andψ1 that matters, but rather the relative
size of their derivatives. For the case of a very localized
perturbation the derivatives ofψ1 may be overwhelmingly
large compared with those ofψ0. In this case, the perturba-
tion decouples (almost) completely from the steady-state.

3.3 Dispersion relation

The stationaryψ1 obeys equation (2) but withψ1 sub-
stituted in place ofψ0. The dispersion relation is analo-
gous to (3) but withψ1 substituted in place ofψ0. Evi-
dently,ψ1 must be an inverted bell-shape, that is ahole,
for the dispersion relation to be fulfilled (assumingZ > 0
and below transition). The number of particles involved is
n =

∫
ψ1dpdq. The dispersion relation differs in two re-

spects from Keil-Schnell: whereas the latter contains the
full beam current (∝ N ) and the full momentum spread of
the beam, the former contains only the current in the hole
(proportional ton) and the momentum width of the hole.

3.4 ψ1 = P (p, t)Q(q, t)

We consider a more general impedanceR+ iZ with re-
sistive and reactive parts andi =

√−1. Let σ be a range
parameter. We substitute the trial solution

ψ1 =
e−(p−γt)2/2σ2

σ
√

2π
λ1(q − γt2/2) , (4)

into the time-dependent Vlasov equation. One finds the av-
erage momentum loss rateγ = −R ∫

λ2
1(q)dq/

∫
λ1(q)dq,

and the residual

Z
∂λ1

∂q

1
σ2
λ1(q) +

∂λ1

∂q
= 0 . (5)

Henceλ must be the inverted “top hat” function within
some range of|q| ≤ ∆q and zero outside that range.λ1(q)
is a negative constant:λ1 = −σ2/Z. This condition im-
plies a very strict relation between the momentum widthσ
of a hole and its depthλ1, such that progressively narrower
holes (σ < 1) become very shallow and hard to detect.

Despite the decoupling ofψ0 andψ1, the steady state dis-
tribution does impose some constraints on the perturbation.
Becauseψ0 ≥ 0, the phase-space density must be high
enough to support the perturbation. Thus for a hole of given
momentum width, there is a critical density below which
ψ0 cannot act as a transport medium for solitons. The den-
sityψ1 is of ordern/(4σ∆q) = −σ/(4Z). The densityψ0

is of orderN/(4π∆p) where∆p is the r.m.s. width ofψ0.
Hence the critical density isN/(π∆p) ≥ σ/Z.

4 CONCLUSION

There is much experimental evidence at the CPS Booster
of near-stationary longitudinal voids introduced acciden-
tally by the linac or deliberately by high-harmonic rf. There
is strong supporting evidence from computer simulations
and theoretical analysis that the holes are perpetuated by
space-charge forces. We have shown that the usual Keil-
Schnell criterion does not explain the voids, but rather sug-
gested they decouple from the background distribution. We
have derived conditions for stationarity of holes that satisfy
the requirement of self-consistency – with the caveat that
the phase-space density be high enough to support the soli-
tons. However, we have not determined stability. A more
complete discussion of these topics is given in Ref.[12]
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