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Abstract
It is shown that intense corkscrewing and periodic

wobbling elliptic beam equilibria exist in piecewise
uniform magnetic fields. The envelope stability analysis
reveals that the corkscrewing elliptic beams in a uniform
magnetic field are stable, whereas the periodic wobbling
elliptic beams are stable in certain regions in the
parameter space. These results are useful not only in beam
matching, but also in producing large-aspect-ratio sheet
beams for high energy accelerators such as the next linear
collider as well as for use in high-power rf sources such as
sheet-beam klystrons.

1. INTRODUCTION
Sheet beams with large aspect ratios are required for

high-energy accelerators such as the next linear collider.
They are also attractive in the development of high-power
rf sources because they have a smaller effective beam
perveance than a round beam used in convention high-
power microwave sources.
Recently, it has been shown [1] that there exists a novel

class of cold-fluid corkscrewing elliptic beam equilibrium
in a general focusing channel consisting of solenodal and
magnetic quadrupole focusing fields. In the cold-fluid
corkscrewing elliptic beam equilibrium, the transverse
beam cross-section is elliptic, and it rotates as the beam
propagates along the focusing channel. The internal flow
velocity profile is a combination of both the elliptical-like
rotating flow and quadrupole-like flow. Applications of
corkscrewing elliptic beams include beam manipulation
such as orienting beam ellipses at the interaction point in
a high-energy collider or at a heavy ion fusion target.
In this paper, we show that intense corkscrewing and

wobbling elliptic beam equilibria exist in piecewise
uniform magnetic fields. Our envelope stability analysis
reveals that the corkscrewing elliptic beams in a uniform
magnetic field are stable, whereas the wobbling elliptic
beams are stable in certain regions in the parameter space.

2. GENERALIZED BEAM ENVELOPE
EQUATIONS

For a continuous, ultrahigh-brightness, space-charge-
dominated corkscrewing elliptic beam propagating with
constant axial velocity zbcêβ through in a focusing
magnetic field

( ) ( ) ( ) ( )yxzzz yxsBsB eeexB ˆˆ
2
1ˆ0 +′−= , (1)

the generalized envelope equations can be expressed [1,2]
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In (1) and (2), ( ) ( )0/ sBsB zz ∂∂=′ , zs = is the axial

coordinate, ( ) ( ) 22/ mcsqBs bbzz βγκ = is the focusing

parameter, and 2232 /2 mcNqK bbb βγ= is the normalized

self-field perveance, where m and q are the rest mass

and charge of the particle, bN is the number of particles

per unit axial length, and ( ) 2/121
−−= bb βγ is the

relativistic mass factor. The variable ( )sθ is the angle of

the beam ellipse, and the variables ix are related to the

variables ( )sa , ( )sb , ( )sxα , ( )sxβ defined in [1] by
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The variables ( )sa , ( )sb , ( )sxα , ( )sxβ and ( )sθ fully
specify the density and flow velocity of the cold-fluid
corkscrewing elliptic beam equilibrium.

3. CORKSCREWING ELLIPTIC BEAM IN
AUNIFORM MAGNETIC FIELD

For a uniform-focusing magnetic field with
( ) == 0zz s κκ const., equation (2) is already split into two

sets of uncoupled equations, and the variable θ is a
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slaved variable. ( )321 ,, xxx describes symmetric modes

with the envelopes a and b oscillating in phase,
( )654 ,, xxx describes anti-symmetric modes with the

envelopes a and b oscillating with opposite phase.
The steady-state solutions to (2) can be obtained

analytically [2]. Two branches of physically acceptable
special solutions are [2]:
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for branch A (i.e., A-mode), and
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for branch B (i.e., B-mode). Since the equilibrium flow
velocity is
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where ( )yx ~,~ is the coordinate in the body frame, the

variables 2x and 5x can be considered as measures of

elliptical-like rotation and quadrupole-like flow,
respectively. For an A-mode, 05 =x , and the

corresponding flow is pure elliptical-like rotation. A B-
mode has a mixture of both elliptical-like rotation and
quadrupole-like flow because both 2x and 5x are

nonzero.
In the envelope stability analysis, we find that the

eigenvalues for A-mode are [2]:
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and for B-mode,
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where ( ) 222 ˆˆˆˆˆˆ yxyxyxAF αααααα +++= , 22 ˆˆ2 yxBF αα=

yyxyxxyxyx αααααααααα ˆ16ˆ5ˆ16ˆˆ18ˆˆ6ˆ5ˆˆ6 2222 +++++++

16+ , 0/ˆ zxx καα = , and 0/ˆ
zyy καα = . Since 0≥AF

and 0>BF , all of the eigenvalues in (7) and (8) satisfy

the condition ( ) 0Re =λ , which means that both A- and
B-mode are always stable.

Figure 1: Eigenmode oscillations for an A-mode.

Figure 1 shows the eigenmode oscillations about an
equilibrium solution in an A-mode, as obtained by
integrating (1) numerically. The choice of system
parameters and initial conditions in Fig. 1 corresponds to:

3100.5 −×=K , ( ) 7.0/0 0 −=zx κα , ( ) 6.1/0 0 −=zy κα ,

( ) 043.00 0 =za κ , ( ) 098.00 0 =zb κ , ( ) ( ) 02.000 =′=′ ba .

Here, the equilibrium solution corresponds to:

( ) 7.0/ 0 −=zx s κα , ( ) ( ) 0=′=′ sbsa , ( ) −=0/ zy s κα 1.6,

( ) 043.00 =zsa κ , ( ) 098.00 =zsb κ , and. In this case,

the envelopes a and b oscillate exactly in phase, but the
variables xα and yα oscillate out of phase. The

normalized frequency of the eigenmode oscillations is

42.1/ 05 =zκλ , which is in agreement with the

expression for the eigenvalue 5λ (or 6λ ) given in (7).

4. WOBBLING SHEET BEAM INA
PERIODIC PIECEWISE UNIFORM FIELD
We make use of the generalized beam envelope

equations (2) and the equilibrium solutions for a uniform-
focusing magnetic field in (4) and (5) to show that it is
possible to “kick” a steady-state solution from A-mode to
B-mode with a magnetic reversal and vise versa to create
a periodic wobbling sheet beam in a periodic piecewise
uniform magnetic field. The orientation angle θ of such a
wobbling sheet beam oscillates between small angles

θ∆± . In particular, for a periodic piecewise uniform

magnetic field with
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in one period from 0ls −= to 1l , and ( ) =+ Sszκ

( )szκ , where 10 llS += is the period, we find that the

beam envelope is given in one period by

( ) [ ] ( )ss Θ−+= −+− xxxx , (10)
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where )(sΘ is the unit-step function, −x is defined by
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and the parameters 0l , 1l , θ∆ , ζ and η are defined by
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respectively. Figure 2 illustrates the orientation angle of
the periodic wobbling sheet beam equilibrium.
We have also analyzed the envelope stability of the

periodic wobbling sheet beam equilibrium using the
transfer matrix method, and found that it is stable in the
white regions shown in Fig. 3.

Figure 2: Axial dependence of the orientation angle of a
periodic wobbling sheet beam equilibrium.

Figure 3: Plot of stable (white) and unstable (black)
regions in the parameter space for a periodic wobbling
sheet beam.

To illustrate the advantages of an elliptical sheet beam
over a round beam in terms of required focusing field
strength, we consider varying the aspect ratio ba /=Γ ,
while keeping the following quantities fixed: abπ , bN ,

bγ and ζ . Because 0f is proportional to the applied

magnetic field strength, we find from the definition of ζ
in (14) that

Γ+
Γ=Γ

1
2

roundB
B

. (15)

As an example we consider a beam with parameters
similar to the SLAC 50MW, 11.4GHz, PPM klystron
experiment [3], where 190=bI A, 85.0=bβ , =a

4.2=b mm, RMS magnetic field 95.1= kG and

1.2=S cm. If we change the aspect ratio to 10=Γ , then

8.7=a mm, 76.0=b mm, the RMS magnetic field is

reduced to 1.1 kG, and °=∆ 5.5θ .

5. CONCLUSION
We showed that intense corkscrewing and wobbling

elliptic beams equilibria exist in piecewise uniform
magnetic fields. The envelope stability analysis revealed
that the corkscrewing elliptic beams in a uniform
magnetic field are stable, whereas the wobbling elliptic
beams are stable in certain regions in the parameter space.
These results are useful not only in beam matching, but
also in producing large-aspect-ratio sheet beams for high
energy accelerators such as the next linear collider as well
as for use in high-power rf sources such as sheet-beam
klystrons.
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