
BEAM LOADING AND PHASE MOTION OF PARTICLES IN THE SELF-
CONSISTENT RF FIELD OF LINAC

E.S. Masunov†, MEPhI, Moscow, 115409, RUSSIA

Abstract
The dynamics of high intensity electron beam in the

travelling wave structure is studied. The equation for self
–consistent RF field are devised to the more general case
in which the series resistance, wave phase velocity and
damping coefficient are slowly varying functions of the
longitudinal co-ordinate. Stationary solutions of nonlinear
equations for RF field amplitude, for bunched beam
energy gain, and phase are found. The recommendations
to optimise the efficiency of low energy electron
accelerator are done.

1 INTRODUCTION
In the design of high-intensity linear electron

accelerators it is important to maximize the efficiency and
minimize the energy spread of the accelerated beam. A
correct study of the dynamics of an intense low energy
beam in a waveguide requires to consider both the change
of the particle velocity and the change of the amplitude
and the phase velocity of the wave which interacts with
the beam in the accelerated structure. This nonlinear task
must be solved in a self-consistent manner. In Ref. [1] this
nonlinear problem was solved for the case of uniform
waveguide structure; the conditions for optimizing a
structure parameters in terms of the efficiency are found
there. The basic assumption used in Ref. [1] is that the
beam can be treated as a train of well-grouped (point)
bunches. It was shows that if the bunches have a finite
phase dimension θ (a relative value of the first current
harmonic I1=2) the energy gain is essentially independent
of θ. But the phase of the bunch particles ψ in the self-
consistent field must be larger than zero in the initial
acceleration region.

It should be noted that the use of uniform structure is
limited at high currents because of the BBU effect and the
low acceleration efficiency. For this reason, non-uniform
waveguides should be used in high-intensity accelerators.
Our purpose in the present work is to generalize the
results of Ref. [1] obtained for uniform structure, to non-
uniform waveguides. The assumptions used in Ref. 1 are
legitimate for an analysis for the optimization of non-
uniform sections in terms of the efficiency of these
sections. We assume that the parameters of the waveguide
section are such that the series resistance Rn(z)=E2/2P and
the wave phase velocity in the absence of the beam, βph ,
and the damping coefficient, αλ=Z , are functions of the
longitudinal co-ordinate ξ=z⁄λ and vary smoothly.

________________
†masunov@dinus.mephi.ru

2 SELF-CONSISTENT EQUATIONS OF
PARTICLE MOTION

The system of equations for the average energy of the

particles, �PF:=γ , for the dimensionless amplitude,
�PF(H$ λ= , and a phase of the RF field ψ is :

ψ=
ξ
γ

FRVA
d

d
, (1)

( ) ψξ−=+
ξ

cos2
d

d
1 BAw

A
, (2)

ψ⋅+










β
−

β
π=

ξ
ψ

sin
211

2
d

d

A

B

ph

. (3)

The last two equations can be derived by using the
Vainshtein method [2], generalized to the case of an

inhomogeneous structure [3]. In this case 
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determines the coupling of the beam with the wave in the
accelerating structure with a positive dispersion (βg>0). In
equation (3) a phase changes due to dynamic slipping
(first item) and reactance beam loading (second one).

Eliminating the phase ψ for Eqs. (1) and (2) we find an
equation relating the amplitude of the self-consistent
field, A(ξ) and beam energy gain in the section:
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This equation expresses conservation of energy. With
pronounced beam loading, in which case the damping at
the walls can be neglected, we find:
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3 CONSTANT GRADIENT STRUCTURE

To find the absolute value of γ(ξ) and A(ξ), we must
solve system (1)-(3) for given functions B(ξ), βph(ξ) and
w(ξ). Let us examine the solution of system (1)-(3) for
structure with a slight non-uniformity, in which ohmic
damping is cancelled by the change in the geometric
dimensions, so that the field amplitude remains constant
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in the absence of the beam (a "constant gradient
structure").

It follows from Eq. (2) that in this case the function

B(ξ) is related to X(ξ): ( ) )X(BB ξ=ξ 2
0 e .

At first, we assume that dynamic slipping of the phase
is small in a section (β=βph). Integrating (2) and (3) with
the initial conditions A(0)= A0, ψ(0)=ψ0, we find
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If ψ0 = 0 at injection, the phase of the bunch in the self-
consistent field is a constant, equal to zero. This case is of
no practical interest for low electron energies, since the
phase stability of the particles in the bunch is disrupted,
and the energy spread increases rapidly. We assume that
the initial phase is ψ0 > 0; then, according to (5), ψ(ξ) is a
monotonically increasing function. At ψ=π/2, the beam
energy reaches a maximum value. The output field
amplitude here is minimal, being given by
( )

��
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N
.

In the simplest case, w =cte, the solution of (1) can be
writen
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Correspondingly, the maximum efficiency of the section
is
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For a large current, we have
ηmax =cos2ψ0. (8)

The efficiency of the accelerator section can be increased
only by reducing the phase of the bunch in the self-
consistent field. As already mentioned, however, for
acceleration near ψ=0 the energy spread of the beam is
degraded; this degradation is more pronounced, the lower
the particle energy and the higher the RF field.
Accordingly, the injection should always be carried out
near ψ=π/2. In practice, this situation can be arranged by
injecting the beam into a section with βph>β0 . Then even
at large values of ψo the "dynamic slip" of the beam with
respect to the wave makes it possible to achieve A≈0 and
ψ=0.

4 EFFECT OF DYNAMIC SLIP

As an example we consider a section with βph=cte.

Equation (7) is now replaced by
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where f (γ)=2π(γ/βph−βγ).

Eliminating the phase from (1) and (9) we find an

equation for γ:
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This equation has the same form as that derived in [1]
for the case B = cte. If the amplitude A and phase ψ are to
approach zero following acceleration, the following two
conditions must hold:

∫
γ

γ

γ=
max

0

d42
0 BA  , (11)
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If one can find γmax and substitute it into (12), we can
find the value of the phase velocity at which the
efficiency is maximized. However, the section cannot be
optimized in terms of the efficiency for all values of βph

found in this manner (these values are functions of ψo , as
follows from (12)). The reason is that for small values of
γ and with βph< 1 the equation ��

�
=γ− ��8+ ,where

H1=
�

�
$ , can have two additional roots, which lie between

γo and γmax . In this case the maximum beam energy is γ1,
rather than γmax (Fig. 1). For a given injection energy γo

and a given input RF power there exists a limiting value
βph,n above which these intermediate roots do not exist.

Figure 1: General form of the function 2U(γ)

To determine the basic features of the beam
acceleration in an optimised section we consider the
phase trajectories in the (γ,ψ) plane for the case w = 0
(Fig. 2), when the particles are injected at various initial
phases. We see from this figure that there are two kinds of
phase trajectories. In one case, with βph < βph,n, the beam
energy γ<γmax (the trajectories are nonclosed). If, on the
other hand βph > βph,n, energy reaches γmax and η≈1(the
trajectories are closed). The final choice of an optimum
version depends on the requirements imposed on the
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output properties of the beam, primarily on its energy
spread.

5 OPTIMISATION FOR OTHER NON-
UNIFORM SECTIONS

At section with high intensity beam slight non-
uniformity cannot balance the beam loading in order to
increase the gradient. Accordingly, we now assume that
B(ξ) and w(ξ) are arbitrary independent functions of ξ.

Figure 2: Phase trajectories in the γ,ψ plane for sections
which are optimized in terms of the efficiency

If dynamic slipping of the phase is small (β≈βph), the
maximum efficiency of such a section is governed by the
initial injection conditions and depend on the nature of the
function B(ξ). Specifically, for high intensity beam,
calculating the section efficiency, we find:
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Accordingly, as in a section with a "constant gradient
structure", the quantity η can be increased by reducing ψo.

Another way to increase the efficiency without degrading
the energy spread of the beam is to use sections with
βph>β. This circumstance can be demonstrated in a
straightforward manner by using (2) and (3) to express the
amplitude and phase of the self-consistent field in terms

of the quantity ( ) ( )( )∫∫
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and X(ξ), i.e., in terms of the total dynamic slip of the
bunch and wave damping:
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The efficiency can be approximately unity even at large
value of ψ0, provided that Ac and As vanish
simultaneously
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In the simplest case B = cte, w=cte the slip is linear
function of ξ. The slip rate µ can be expressed in terms of

the working frequency: 
�
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β
π=µ . Here ωo is the

nominal frequency at which the phase velocity in the
system without the beam is unity and the group velocity
βg≠0.

In the low damping limit, using (14a) we have
µψ−=ξ 02f . Substituting this value into (14b) we can

find optimal slip rate:
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The same result can be found by using Eq.(12) and setting
γmax=γ0+A0

2⁄4B0 .

6 CONCLUSION
The self-consistent equations of particle motion in the

travelling wave non-uniform structure has been solved.
The recommendation for choice of the phase velocity βph

and the coupling parameter B(z) to optimise the efficiency
of the electron acceleration and to reduce energy spread
was been given.
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