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Abstract

Computer simulations have become an indispensable
tool for studies of the physics of dynamical systems. To
achieve an appropriate level of confidence in the simulation
results, accuracy assessments must be conceived as an in-
tegral part of the simulation strategies. A common indirect
validation method is to cross-check the results of commen-
surable simulation codes against each other. Furthermore,
the simulation results of particularly chosen scenarios may
be compared against analytical models.

In this article, we present a “direct” technique for the er-
ror assessment of numerical simulations of time-dependent
Hamiltonian systems. The method is based on an invari-
ant I that has been shown to exist for n-degree-of-freedom
Hamiltonian systems with general time-dependent poten-
tials [1, 2]. Because of the generally limited accuracy of
numerical methods, this invariant I can never be realized
strictly in numerical simulations. The relative deviation
of a numerically calculated “invariant” I(t) from the ex-
act invariant I0 =I(0) may then be taken as the error es-
timation for the respective simulation. In this sense, the
“direct” error assessment technique can be regarded as a
generalization of a validation method that is applicable for
autonomous (time-independent) Hamiltonian systems. For
these cases, the Hamiltonian H itself represents an invari-
ant. Accordingly, the relative deviation of H(t) from H 0 in
the simulation is commonly used as an accuracy criterion.

Our approach is applied to estimate the accuracy of
a simulation of a three-dimensional system of Coulomb-
interacting particles that are confined within a time-de-
pendent quadratic external potential.

1 INVARIANT FOR TIME-DEPENDENT
HAMILTONIAN SYSTEMS

We consider an ensemble of N non-relativistic parti-
cles of the same species confined within an explicitly time-
dependent potential V . Its Hamiltonian H takes the form

H =
N∑

i=1

1
2

[
p2

x,i + p2
y,i + p2

z,i

]
+ V (�x, �y, �z, t) . (1)

Herein, �x, �y, and �z denote the N component vectors of the
spatial coordinates of all particles; the px,y,z;i the respec-
tive canonical momenta. From the canonical equations, we
derive for each particle the equation of motion

ẍi +
∂V (�x, �y, �z, t)

∂xi
= 0 , i = 1, . . . , N . (2)
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The corresponding equations hold for the y- and z-direc-
tions. A function of all phase-space variables and time t

I = I
(
�x(t), �px(t), �y(t), �py(t), �z(t), �pz(t), t

)
(3)

is referred to as a constant of motion or invariant if and only
if the value of I remains constant as the system evolves in
time. In other words, dI/dt = 0 must hold along the phase-
space path {�x(t), �px(t), �y(t), �py(t), �z(t), �pz(t)} defined by
the system’s time evolution. This path is defined as the
one-parameter subset of the 6N -dimensional phase-space
on which the equations of motion (2) are fulfilled.

In explicit form, the invariant (3) for the Hamiltonian (1)
is given by [1, 2]

I = ξ(t)H − 1
2 ξ̇(t)

N∑
i=1

[
xi px,i + yi py,i + zi pz,i

]

+ 1
4 ξ̈(t)

N∑
i=1

[
x2

i + y2
i + z2

i

]
,

(4)

with the function of time ξ(t) representing a solution of the
linear homogeneous third-order auxiliary equation

4ξ̇(t)
(

V + 1
2

N∑
i=1

[
xi

∂V

∂xi
+ yi

∂V

∂yi
+ zi

∂V

∂zi

])

+ 4ξ(t)
∂V

∂t
+

...
ξ (t)

N∑
i=1

[
x2

i + y2
i + z2

i

]
= 0 .

(5)

We observe that for ∂V/∂t ≡ 0, i.e. for autonomous sys-
tems, ξ(t) ≡ 1 is always a solution of Eq. (5). For this ξ(t),
the invariant (4) reduces to I ≡ H , hence coincides with
the Hamiltonian H as a well-known invariant for systems
with no explicit time-dependence.

As the coefficients of the auxiliary equation (5) generally
depend on all spatial coordinates, the integral function ξ(t)
can only be calculated in conjunction with the solution of
the equations of motion (2). With the known particle tra-
jectories, all coefficients of Eq. (5) are in fact functions of
the parameter time only. Then, Eq. (5) represents a linear
ordinary differential equation for ξ(t) with time-dependent
coefficients. According to the existence and uniqueness
theorem for linear ordinary differential equations, a unique
solution ξ(t) of Eq. (5) exists — and consequently the in-
variant I of Eq. (4) — if the given potential function V and
its partial derivatives are continuous.

With ξ(t) a solution of (5), we may directly prove that
dI/dt = 0 holds along the phase-space path defined by
the solution of the equations of motion (2). Substituting
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Eqs. (2) into the total time derivative of (4), we find that
the surviving terms agree with the auxiliary equation (5).
Hence, Eq. (4) provides a conserved quantity I as a time
integral of Eq. (5) if and only if the system’s evolution
is governed by the equations of motion (2). We will use
this relationship in Sec. 3 to estimate the numerical error of
computer simulations of a system of Coulomb-interacting
particles. Beforehand, we work out the invariant and the
auxiliary equation in the particular form pertaining to this
Hamiltonian system.

2 INVARIANT FOR A SYSTEM OF
COULOMB-INTERACTING PARTICLES

We now consider an ensemble of N Coulomb-inter-
acting particles of the same species moving in a time-
dependent quadratic external potential, as given in the co-
moving frame for charged particle beams that propagate
through linear external focusing devices. The potential
function V of this system is given by

V (�x, �y, �z, t) =
N∑

i=1

[
1
2ω2

x(t)x2
i + 1

2ω2
y(t) y2

i

+ 1
2ω2

z(t) z2
i + 1

2

∑
j �=i

c0

rij

]
,

(6)

with r2
ij = (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 and
c0 = q2/4πε0m, q and m denoting the particles’ charge
and mass, respectively. The 3N equations of motion that
follow from (2) with (6) are

ẍi + ω2
x(t)xi − c0

∑
j �=i

xi − xj

r3
ij

= 0 , (7)

and likewise for the y and z degrees of freedom. We note
that the factor 1/2 in front of the Coulomb interaction term
in (6) disappears since each term occurs twice in the sym-
metric form of the double sum. With the potential (6), the
auxiliary equation (5) specializes to

〈
x2

〉 (...
ξ + 4ξ̇ω2

x + 4ξωxω̇x

)

+
〈
y2

〉 (...
ξ + 4ξ̇ω2

y + 4ξωyω̇y

)

+
〈
z2

〉 (...
ξ + 4ξ̇ω2

z + 4ξωzω̇z

)
+

2W (t)
mN

ξ̇ = 0 .

(8)

Herein, the sums over the squares of the particle coor-
dinates are written in terms of “second beam moments”,
denoted as

〈
x2

〉
for the x-direction. Furthermore, W (t)

stands for the electrostatic field energy constituted by all
particles

〈
x2

〉
(t) =

1
N

N∑
i=1

x2
i (t) , W (t) =

m

2

N∑
i=1

∑
j �=i

c0

rij
.

The invariant I for this system is given by (4), provided
that ξ(t) is a solution of the auxiliary equation (8). As al-
ready stated above, its time-dependent coefficients

〈
x2

〉
(t),

〈
y2

〉
(t),

〈
z2

〉
(t), and W (t) must be known as the result of

the simultaneous integration of the equations of motion (7).
Again, we may directly prove that the invariant (4) with (1)
and (6) constitutes a time integral of the auxiliary equa-
tion (8) by calculating the total time derivative of (4) and
inserting the single particle equations of motion Eq. (7).

Defining ω2(t) as the “average force function”

ω2(t) =
ω2

x

〈
x2

〉
+ ω2

y

〈
y2

〉
+ ω2

z

〈
z2

〉
〈x2〉 + 〈y2〉 + 〈z2〉 ,

the linear third-order auxiliary equation (8) may be ex-
pressed equivalently in terms of a coupled set of a non-
linear second-order equation for ξ(t)

ξξ̈ − 1
2 ξ̇2 + 2ω2(t) ξ2 = g(t) , (9)

and a first-order equation for g(t). Comparing the time
derivative of (9) with (8), one finds that ġ(t) must satisfy

ġ(t) =
1

〈x2〉 + 〈y2〉 + 〈z2〉
[
− 2ξξ̇

W

mN
+ 4ξ2

{

〈xpx〉
(
ω2

x − ω2
)
+〈ypy〉

(
ω2

y − ω2
)
+〈zpz〉

(
ω2

z − ω2
)}]

.

(10)

Unlike the third-order auxiliary equation (8), the equiva-
lent coupled set of equations (9) and (10) no longer con-
tains the time derivatives of the external focusing functions
ω2

x(t), ω2
y(t), and ω2

z(t). It has been shown in Ref. [1] that
ġ(t) ≡ 0 in the case of a one-dimensional linear system.
ġ(t), as given by Eq. (10), thus quantifies the contribution
of our actual three-dimensional non-linear system to the so-
lution ξ(t) of the second-order auxiliary equation (9). We
learn from Eq. (10) that ġ(t) is determined by two quanti-
ties of different physical nature: the field energy W con-
stituted by all particles as a measure for the strength of the
Coulomb interaction, and the system’s anisotropy.

With the help of Eq. (9), we may substitute ξ̈(t) and the
external focusing functions in (4) to express the invariant I
in the alternative form

I =
N

2ξ

[ 〈(
ξpx − 1

2 ξ̇x
)2

〉
+

〈(
ξpy − 1

2 ξ̇y
)2

〉

+
〈(

ξpz − 1
2 ξ̇z

)2
〉

+ ξ2 2W

mN

+ 1
2g(t)

( 〈
x2

〉
+

〈
y2

〉
+

〈
z2

〉 )]
.

(11)

In the following section, we will numerically calculate the
invariant (11) as a function of time in order to estimate the
accuracy of a simulation of a system governed by the cou-
pled set of 3N second-order equations (7).

3 CHECKING SIMULATIONS OF
COULOMB-INTERACTING PARTICLES

In the ideal case, i.e. if no numerical inaccuracies were
included in a computer simulation of a Hamiltonian sys-
tem, and no numerical errors were added performing the
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subsequent integration of the auxiliary equation, we would
not experience any deviation ∆I =I(t)−I0 calculating the
invariant I(t) as a function of time.

Of course, we can never avoid numerical errors to occur
in computer simulations of dynamical systems because of
the generally limited accuracy of numerical methods. For
the same reason, the numerical integration of the auxiliary
equation is also associated with a specific finite error tol-
erance. Therefore, the numerically calculated value of I
as given by Eq. (11) — with ξ(t), ξ̇(t), and g(t) following
from (9) and (10) — can never be exactly constant. Both
numerical problems, the numerical integration of the equa-
tions of motion (7), and the subsequent numerical integra-
tion of the coupled set of Eqs. (9), (10) contribute to a non-
vanishing ∆I/I0 along the integration time span. Since
both problems do not depend on each other with respect to
their specific error tolerances, we may regard the resulting
∆I/I0-curve as a cross-check of both numerical methods.

We can directly estimate from ∆I(t)/I0 the error tol-
erance integrating the 6N first-order equations of motion
corresponding to (7) if the error from the numerical inte-
gration of the three first-order equations that correspond to
Eqs. (9) and (10) can be neglected. This can be achieved by
setting the time step size together with the error tolerances
for the integration of the auxiliary equation appropriately.
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Figure 1: Relative invariant errors ∆I/I0 for three-dimen-
sional simulations of a charged particle beam with different
numbers of macro-particles and only the “natural” error of
the numerical calculation. τ denotes the length of the fo-
cusing period.

Fig. 1 displays two examples of curves of relative de-
viations ∆I/I0 from the invariant (11) for numerical sim-
ulations of a charged particle beam. The functions ξ(t),
ξ̇(t), and g(t) that are needed to calculate I were obtained
from a numerical integration of the coupled set (9) and (10).
The time-dependent coefficients, namely the second beam
moments and the field energy W (t) had been determined
beforehand from three-dimensional simulations of charged
particle beams propagating through a linear focusing lattice
with non-negligible Coulomb interaction, as described by
the potential function (6). As expected, the residual devia-

tion ∆I/I0 depends on the number of macro-particles used
in the simulation.
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Figure 2: Relative invariant errors ∆I/I0 for a three-di-
mensional simulation of a charged particle beam with sys-
tematic 2.5%- and 5%-errors in the space-charge force cal-
culations. τ denotes the length of the focusing period.

For a comparison, the corresponding deviations are plot-
ted in Fig. 2 for the simulation of Fig. 1, but now compris-
ing systematic 2.5%- and 5%-errors in the space-charge
force calculations. We now find macroscopic oscillations
of the relative invariant deviation ∆I/I0 in the order of
10−3, hence three orders of magnitude larger than the
corresponding simulation with no systematic space-charge
force error. We conclude that the “direct validation tech-
nique” may also serve the purpose to pinpoint eventual sys-
tematic errors in a simulation algorithm.

4 CONCLUSIONS

The existence of a constant of motion I for general
explicitly time-dependent Hamiltonian systems has been
shown to be useful to check the accuracy of numerical sim-
ulations of this class of dynamical systems. Having numer-
ically integrated the equations of motion, the system’s aux-
iliary function ξ(t) can be numerically calculated, and the
numerical value of the “invariant” I(t) be obtained thereof.
The relative deviation ∆I/I0 of I(t) from the exact invari-
ant I0 — defined by the initial conditions — can then be
used as a measure for the accuracy of the respective simu-
lation. Comparing simulation runs with different parame-
ters, such as the number of macro-particles, the time step
size, details of the numerical algorithm used to integrate
the equations of motion, we may straightforwardly check
whether the overall accuracy of our particular simulation
has been improved.
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