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Abstract

Recently, it was proposed to use negatively charged elec-
tron beams for compensation of beam-beam effects due to
protons in the Tevatron collider [1]. We show that a sim-
ilar compensation is possible in space-charge dominated
low energy proton beams. The idea has a potential of
several-fold increase of the FNAL Booster beam bright-
ness. Best results will be obtained using three electron
lenses around the machine circumference, using co-moving
electron beam with time structure and profile approximately
matched to the proton beam. This technique, if feasible,
will be more cost effective than the straightforward alter-
native of increasing the energy of the injection linac.

1 INTRODUCTION

Defocusing repulsive forces due to self space charge lead
to degradation of high-intensity particle beams. In circular
accelerators, the figure of merit of such an effect is shift of
incoherent betatron oscillations [2]:

∆νSC = −NtotrcBf
4πεnβpγ2

p

,

where Ntot is total number of particles in the ring, rc =
1.53 · 10−18m for protons, εn is rms normalized emittance,
βp = vp/c and γp are usual relativistic parameters, and
Bf ≥ 1 is a peak to average current ratio. Normally, for
proton low-energy synchrotrons the tune shift lays in range
of -0.1...-0.5 (see, e.g.,[4]). Above the threshold, the beam
emittance dilute and particles are lost. Due to the accelera-
tion, the short time at low energy is enough for developing
only the lowest order resonances.

Compensation of space charge forces on average, can
significantly improve dynamics in low-energy accelerators,
and allow higher beam intensities.

2 COMPENSATION OF SPACE CHARGE
FORCES BY ELECTRON BEAMS

Negatively charged electron beams can be used for com-
pensation of space-charge effects in low energy proton
beams the same way as in the ongoing Tevatron Elec-
tron Lens (TEL) project to compensate beam-beam effects
due to protons in the Tevatron collider [1]. Protons going
through the electron beam experience focusing force which
has opposite sign to self space charge force and can pre-
cisely fully or partially compensate the latter.

Practically, the electron beam set-up could occupy only
a small fraction of the ring circumference C . Therefore,
the kick experienced by every proton could be compensated

only in average. In the same time, the proton bunch struc-
ture can be matched by fast modulation of the electron cur-
rent.

Assumingκ being a degree of the compensation, the tune
shift on the electron beam can be presented as

∆νe ≡
βr
4π

(1− βeβp)JeLrc
eβecσ2

eγpβp
= −κ∆νSC ,

where Je is electron current, σe is the rms electron beam
radius, L is interaction length, βr is beta function at the lo-
cation of the electron lens.

The necessity of fast longitudinal electron current mod-
ulation for matching the proton bunch profile requires for
electrons to move in the same direction as protons.

Assuming the rms size of the electron beam matching the
proton beam size in the location of the electron lens σ2

e =
εnβpγpβr , then we obtain the necessary electron current in
the lens:

Je = κJpBf
C

L

βe
γ2
pβ

2
p(1− βeβp)

,

As it is shown in the next Section, optimum compensation
requires κ � 0.3.

3 COHERENT MODES AND OPTIMAL
COMPENSATION

The beam own space charge forces shift down both
single-particle (incoherent) modes and the beam coher-
ent modes. An exception is the coherent dipole mode
(beam centroid motion) which does not depend on the space
charge, when the image charges are neglected. If one of
these modes is in resonance with the focusing lattice (struc-
ture resonance), the mode becomes unstable, that leads to
the beam loss and/or growth of the beam emittance. An im-
portant point is that the space charge and electron tune shifts
are mode-specific, so if the electron lens compensates the
space charge tune shift for one of the modes, it does not
compensate it for others. Therefore, the electron lens can
increase the proton brightness threshold but can not elimi-
nate it. The incoherent tune shift introduced by the electron
lens ∆νe can be considered as proportional to the Laslett
tune shift ∆νSC, i. e. ∆νe = −κ∆νSC , with compensa-
tion coefficient κ to optimize.

In the smooth approximation, assuming approximately
equal vertical and horizontal lattice tunes νx ≈ νy ≈ ν0,
and small tune shifts ∆ν << ν0, the single-particle fre-
quency goes as

ν = ν0 + (κ− 1)∆νSC . (1)
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In this case, the coherent tunes of the dipole and two en-
velope modes (subscripts ”d”, ”+” and ”-”) are given as

νd = ν0 + κ∆νSC
ν+ = 2ν0 + (2κ− 1)∆νSC
ν− = 2ν0 + (2κ− 3/2)∆νSC .

(2)

A consequence of these simplified expressions is that an
exact compensation of the space charge tune shift for all
the three tunes, or even for any two of them, is impossi-
ble; if one of the modes is compensated, the two others are
not. Instead, there is a best compensation degree κ, with
∆ν0 = κ∆ν , where the stopping resonance is reached at
the maximal space charge.

Table 3 summarizes data from various space-charge lim-
ited low-energy proton synchrotrons [4] - the first row
shows bare lattice tunes νx and νy, the second row contains
maximum empirically achieved Laslett tune shift for each
machine ∆νexp. We compare experimental values with
calculated distance ∆νinc to the nearest half-integer reso-
nances: incoherent (third row) and coherent ∆νcoh (bot-
tom row), calculated as in Ref. [3].

The table reveals some noticeable features. First, the em-
pirically reached Laslett tune shifts significantly exceed the
single-particle limits ∆νinc. Second, for all machines but
AGS and AGS-Booster ∆νexp is close to the threshold of
the envelope instability ∆νcoh. This leads to a conclusion
that the incoherent resonances may not be important; the ac-
tual threshold is rather determined by the coherent instabil-
ities. This conclusion agrees with the analysis of Ref.[3].
Finally, the resonances at ∆νcoh ≤ 0.1 do not reveal them-
selves, perhaps, due to a weak space charge at the resonance
crossing.

Behavior of the modes changes when the compensation
is applied. Dynamics of the dipole mode is rather differ-
ent from the envelope modes, that makes it difficult to even
double the threshold by varying the compensation degree κ,
because one or another mode should cross linear resonance.
Threshold Laslett tune shift of about 0.6 can be achieved
with κ = 0.33 (a factor of ≈ 1.6 in comparison with the
no-compensation case).

An additional option is associated with a possibility to
have the degree of compensation κ variable and dependent
on the Laslett tune shift. In that case, modulation of the
electron beam current is almost as easy as for the constant
κ strategy. The variable rate allows to jump over the reso-
nances, which could additionally increase the space charge
limits.

Symmetry of an accelerator focusing lattice is impor-
tant for the space-charge compensation. If the lattice con-
sists of P identical periods, then strong and wide structure
linear resonances occur at coherent/incoherent frequencies
νcoh, inc = Pm/2, where m is integer.

Thus, more than one compensation set-up is needed to
keep nearest linear resonances as non-structure. For exam-
ple, the Fermilab Booster has periodicityP = 24, and tunes
νx,y = (6.7, 6.8). With two electron lenses symmetrically

placed in opposite parts of the ring, the effective periodic-
ity is reduced to P = 2. Thus, the nearest incoherent res-
onance ν = 6.5 is non-structure (as it is without compen-
sation devices at P = 24), but the envelope resonances at
ν−,+ = 13 = Pm/2 = 2 · 13/2 become structure. As
the result, three identical compensators symmetrically po-
sitioned at the orbit are required in order to preserve non-
structure weakness of the nearest incoherent and coherent
resonances.

4 NUMERICAL EXAMPLE: FERMILAB
BOOSTER

Let us consider the space-charge compensation in the
Fermilab Booster. Parameters of FNAL Booster are pre-
sented elsewhere [5, 4]). The space charge tune shift at in-
jection is about

∆νSC(t) = −0.435·Bf(t)·
(

[εnβpγ2
p ](t)/[εnβpγ2

p ](t = 0)
)

if parameters are Ntot = 5 · 1012, εn = 1 πmm · mrad,
γp = 1.4, βp = 0.7. The period of strong space-charge
action is comparatively short - injection itself takes about
12 turns, then some 20-40 turns the beam circulates with-
out RF to wipe off the Linac RF structure - it corresponds
to Bf = 1. After that the Booster RF is being adiabati-
cally turned on over some 100 turns, and then the beam en-
ergy rapidly grows, e.g., to 2.5 GeV after about 3000 turns.
Note, that the ratio of peak to average current rapidly in-
creases from 1 to Bf (t) ≈ 2 − 3 over a hundred turns,
while the factor 1/(βpγ2

p) slowly decreases 4 times from
0.71 to 0.174 over thousands of turns. If there would be no
particle loss and emittance blow up then the Booster beam
space charge tune shift parameter would reach the maxi-
mum value of right after bunching ∆νSC ≈ 0.9− 1.3.

Currently, due to space charge effects, the beam loses
some 35-40% of particles during that initial period of 5-
6 ms, and its transverse emittance blows up about 3 times
[6]. From that we can conclude that the beam brightness
deteriorates quickly if the space charge tune shift exceeds
∆νSC ≥ −(0.25−0.4), that is consistent with conclusions
of previous studies in the Booster [7].

According to our analysis in the previous Section, the op-
timal compensation coefficient is less than 1, κ = 0.33 −
0.55, therefore, we can present the required peak electron
current as

Je = (Bf · κ) · ecNtot
LNl

· βe
γ2
p(1− βpβe)

.

As concluded in Section 3 above, it is beneficial to install
Nl = 3 equally strong lenses in the Booster, so if each is
L =4 m long (to fit 6 m long drift sections), then forBf = 3
and Ntot = 5 · 1012 we yield Je(κ = 0.33) = 8.3A
of the peak current in each of three 70 kV electron beams,
βe = 0.52. The choice of the electron beam energy and βe
is made to satisfy condition σs ≈ L(βp − βe)/βp, where
the rms proton bunch length of σs = 1 m is taken. If the
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Parameter KEK-B FNAL-B ISIS AGS AGS-B CERN PS CERN PS-2

νx/νy 2.17 / 2.3 6.7 / 6.8 3.7 / 4.2 8.75 / 8.75 4.8 /4.9 6.22 / 6.22 6.22 / 6.28

∆νexp 0.23 0.4 0.4 0.58 0.5 0.27 0.36

∆νinc 0.17 0.2 0.2 0.25 0.3 0.22 0.22

∆νcoh 0.27 / 0.08 0.36 / 0.08 0.32 0.33 0.07 / 0.2 0.27 0.33

Table 1: Laslett tune shift reached empirically ∆νexp at various low-energy synchrotrons as compared with calculated
Laslett tune shifts related to the nearest incoherent ∆νinc and coherent ∆νcoh resonances.

ultimate goal is to double the Booster intensity - that is
allowed by the FNAL Linac and will require more Booster
RF power - then Je(κ = 0.33)=16.6 A of the electron cur-
rent are needed.

In general, the Booster Electron Lens (BEL) will be
much alike the Tevatron Electron Lens (TEL) for compen-
sation of beam-beam effects [1].

The BEL will consist of solenoid magnets for electron
beam transport, electron gun and collector, high voltage
modulator, vacuum system, beam diagnostics and control.
The 4 m long interaction region has to be inside a pair of
2-m long 2-4 kG solenoid magnets with opposite polarity
of the magnetic field. Such a configuration will provide
zero field integral

∫
Bdz = 0 and, thus, will minimize the

Booster focusing lattice perturbation. Magnetic field lines
in these magnets have to be straight within 1 mm (some
20% of the proton beam size); a number of additional dipole
corrector coils are needed for the electron beam steering.
Shorter 2-4 kG side solenoids are necessary for electron
beam injection and extraction. It may be necessary to add
two toroids to make the 90 degrees turns smoother. This
will be the subject of more detailed studies. A lot of sub-
systems, including the gun and collector, beam diagnos-
tics, HV pulser can be just copied and/or upgraded from the
Tevatron Electron Lens set-up, see Ref.[1] and references
therein.

5 SUMMARY

The use of low-energy high-current electron lenses to
compensate space charge effects in high-brightness pro-
ton accelerators looks very promising. Our consideration
shows that in optimal configuration few (three) electron
lenses can compensate space charge tune shifts as large as
∆νSC ≈ 0.6 − 1.2. With further increase of the proton
beam brightness some coherent modes or incoherent mo-
tion can become unstable while crossing particular reso-
nances.

We have considered electron lenses for the compensa-
tion in the Fermilab Booster. We found that electron beam
systems are quite feasible for realization of either proton
beam emittance upgrade or two-fold intensity upgrade in
the Booster. These upgrades can significantly improve the
performance of fixed target experiments, e.g., NuMI; and/or
will allow to increase the antiproton production, proton

beam brightness in collision and ultimately increase the lu-
minosity of the Tevatron.

In principle, there are other tools to compensate the tune
shift but they all have serious disadvantages. For exam-
ple, pulsed γt-jump quadrupoles in the Booster can shift
the tune for about 2, but it does not seem possible to mod-
ulate their gradients over the bunch length of few ns. RF
quadrupoles can provide necessary modulation along the
bunch but will require very powerful RF sources.

The proposed electron lens has a number of advantages:
easier beam shape control and current modulation, mod-
erate power consumption. The parameters of the lens are
quite feasible that make the proposal attractive for further
consideration and practical implementation.

The proposed compensation can also allow a substan-
tial brightness increase in low energy proton and ion stor-
age rings with electron cooling, as many of them are space-
charge dominated.

Space charge compensation in low energy (∼ 1 MeV)
coasting proton beams by ionization electrons was reported
in [8]. The compensation allowed many-fold increase of the
proton intensity compared to the proton space-charge limit.
We think that advantages of the well-controlled electron
beams will allow to achieve comparable success in high-
energy bunched proton beams as well.

We acknowledge helpful discussions with R.Webber,
J.Lackey, R. Baartman, J.Marriner, S.Y.Lee, V.Dudnikov
and S.Holmes.
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