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Abstract

An approach to account for the two-dimensional character
of collisions of particles inside a relativistic electron bunch
and to estimate influence of this factor upon parameters of
a beam in a synchrotron is developed.

1 INTRODUCTION

Processes of mutual scattering of particles inside a rela-
tivistic bunch, i.e. the Touschek effect, define to large ex-
tent the sizes and lifetime of electron and positron beams
in storage rings and colliders at rather low energy. A
well-known theory for this effect stated consistently in [1]
bases on a one-dimensional approximation of two-particle
Coulomb interaction. Such approach is practically true for
conventional colliders with flat orbits, where the horizontal
equilibrium size of the beam exceeds significantly the ver-
tical one. Further development of methods of control over
the vertical size with the help of longitudinal and skew-
quadrupole fields and particularly appearance of the round
beam conception [2], can make the mentioned approxima-
tion seem insufficient. The presented work aims at devel-
oping an approach to account for the two-dimensional char-
acter of particle interaction inside a bunch and estimate its
influence upon beam parameters [3].

2 DISTRIBUTION FUNCTION

2.1 Main definitions

Let list some qualitative considerations clarifying the main
difference in description of the processes of intra-bunch
particle scattering in a two-dimensional electron beam as
compared with a conventional one-dimensional approxi-
mation (flat beam). Let designate p = |�p1 − �p2|/2 the par-
ticle momentum in the center-of-mass system (c.m system)
moving together with the beam. Generally momenta of the
colliding particles�p1 and �p2 have both horizontal (pX ) and
vertical (pZ) components. Similarly to the kinetic gas the-
ory, variance of the momentum p is doubled as compared
with the one-dimensional case, if the efficient temperatures
by degrees of freedom are equal (σ 2

pX
= σ2

pZ
= σ2

p):
< p2 >= σ2

p . Here temperature for either of the direc-
tions of motion is defined by the spread of the correspond-
ing component of the transverse particle momentum, equal
for the laboratory (lab) and accompanying (c.m.) systems.
Variance growth means a change of the form of the distribu-
tion function as to the momentum p and, therefore, regard-
ing the relative velocity of the colliding particles ν = 2p/m
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(m is the electron mass). That must influence the efficiency
of the intra-bunch scattering processes as a whole, since the
Møller differential cross-section is inversely proportional
to the forth degree of ν.

It is important most of all to obtain the form of the distri-
bution function f(p) that would in a certain way take into
account the two-dimensional character of two-particle in-
teraction inside an electron bunch under the condition that
the vertical temperature σ2

pZ
is not small. Note that only

in one case, namely when the X- and Z-temperatures are
equal, the function f(p) takes the form of two-dimensional
Maxwell distribution: f(p) ∝ p · exp (−p2/σ2

p).

2.2 One-dimensional case (flat beam)

Let the flat electron beam in the synchrotron be character-
ized by the Gauss distribution of the trajectory angles in
the horizontal plane (X ′) with the dispersion σX′ . We will
express the momentum in the c.m. system as p = mcγξ =
p0γξ and the spread of the transverse momentum in the
beam as σp = p0γσX′ , where γ is the relativistic factor
and ξ = |X ′

1 − X ′
2|/2 = ν/2c is the relative velocity of

colliding particles (“1” and “2”) in units of the velocity of
light. The distribution function f(p) for the flat beam is
given by the expression [1]

f(p)dp =
2√
πσp

exp
(
− p

2

σ2
p

)
dp.

2.3 Approximation of two-dimensional colli-
sions

Let find distribution of the squared relative velocity in the
electron beam

ν2 = ν2
X + ν2

Z ,

where the designations of the velocity components, νX and
νZ , are introduced, which in turn are defined as the differ-
ence between the components of velocities of particles ”1”
and ”2”. We derive the distribution function, assuming that
the values ν2

X and ν2
Z are ”statistically” independent.

In the mentioned assumption, the probability density for
the value Y = ν2 is obtained in the following form:

fY =
1

4σX′σZ′
exp

[
−Y

2

(
1

4σ2
X′

+
1

4σ2
Z′

)]
·

I0

[
Y

2

(
1

4σ2
X′

− 1
4σ2

Z′

)]
,

I0(x) is the modified Bessel function. Let introduce the
parameter k = σX′/σZ′ . In the so-called ”round” beam
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k → 1 and in the flat one k → ∞. The sought function of
distribution as to momentum in the center-of-mass system
if the parameter k is used, it has the following form [3]:

f(k, p)dp =
2kp
σ2

p

· S(w, k)dp,

S(w, k) = exp
[
−w

2
(1 + k2)

]
I0

[w
2

(1 − k2)
]
,

where w = p2/σ2
p. Fig.1 presents the plotted distribu-

tion function for different k. One can see that at k → ∞

Figure 1: Distribution function f(k, x), x = p/σp.

the function approaches the form corresponding to the one-
dimensional case. At k → 1 the distribution becomes the
two-dimensional Maxwell one.

3 MODIFIED RATE OF DIFFUSION

Applying the distribution function of two-dimensional ap-
proximation, we obtain the modified rate of energy diffu-
sion due to multiple inner scattering, averaged over the en-
semble of beam particles in the laboratory system:

{w < δE2 >}lab =
4
√
πr20m

3c4

σp
·B(k, χm).

Here w is the number of scattering acts per time unit;
< δE2 > - the increment of squared energy averaged over
angles; r0 - the classical electron radius; χm = pm/σp;
pm = p0

√
r0/bmax - the classical lower limit of momen-

tum transfer; bmax - the maximal scale of the impact pa-
rameter. A novelty is the form of the function B, which
now depends not only on the parameter χm as in the con-
ventional theory [1] but also on the coupling parameter k:

B(k, χm) =
√
πk

∞∫
χm

√
1
χ
· ln

(
χ

χm

)
· S(χ, k)dχ.

The functionB(k, χm) was constructed in Fig.2 for differ-
ent k.

Figure 2: The modified ”Touschek function” describing the
dependence of the diffusion rate on the parameter χm.

4 MODIFIED “LOSS FUNCTION”

The efficient volume in which a probe particle experiences
per time unit a scattering over a relatively large angle and
leaves the accelerator is equal to the product of the relative
velocity ν and the loss cross section σΠ [1]:

νσΠ =

∞∫
Ap/γ

νσΠf(k, p)dp =
√
πr20m

3c4

σ3
pε

C(k, ε),

where the ”loss function” C depends on the parameters k
and ε = Ap/γσp with Ap being the ”aperture” in the devi-
ation of the longitudinal momentum from the equilibrium
value and has the following form

C =
√
πkε

∞∫
ε

χ− 3
2

[
χ

ε
− 1

2
ln
χ

ε
− 1

]
· S(χ, k)dχ.

One can see from Fig.3 that for ε < 10−2 (ε ∼ 10−4 for
VEPP-4M) and small k the value C becomes less than in
the one-dimensional limit.

Figure 3: The modified ”loss function”.

Nevertheless, the definitive result on the beam lifetime
depends on other parameters, too. In particular, it depends
on σp, which also varies with parameter k.
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5 SMOOTH APPROXIMATION

The determinative process in the integrate Touschek effect
is the energy diffusion. Losses of particles (lifetime) at a
single scattering depend on the steady dimensions of the
beam and are in this sense a secondary process. Coupling
of oscillations determines the ratio between the transverse
sizes, in particular, the parameter k as well as the tilt of
beam cross section. Note that their computation can be
carried out with the application of radiation processes only.

To find out main particularities of the two-dimensional
approach, we will assume that the indicated geometry of
beam is set and, for example, may be described in terms
of the theory of difference coupling resonance. Besides,
we use a smooth approximation for amplitude functions
βX , βZ of the synchrotron: βX,Z = R/QX,Z , QX,Z -
betatron tunes, R - the average radius. Let denote u =
(σγ/γ)2 = ur + ut - the squared relative energy disper-
sion; v = EX - the radial phase volume; æ = EZ/EX -
the conventional definition of the coefficient of coupling
as the ratio of vertical and radial phase volumes, k =√
βZ/(æβX); H = R/Q3

X = const; vr/ur = vt/ut =
G = const; σS = Rα

√
u/QS - the longitudinal beam size,

QS - the synchrotron tune, α - the orbit compression factor.
Here the indexes r and tmark the contribution respectively
of radiation and Touschek effect. In the smooth approx-
imation, the beam energy spread can be determined from
the equation which is similar in the form to that in [1]:

u3 =
N τγr20cQSk

√
βXB(k, χm)

32πγ3RαβZ

√G(G + H)
+ uru

2.

χm =
( N

8π3/2γ7σXσZσS

)1/3

· r0βX

u(G + H)
.

Here N is the number of particles in the beam; σXσZ =
uβZG/k is the product of transverse beam sizes. The in-
verse beam lifetime is found from

1
τ

=
N r20m3c5QSk

√
βX

8πRαβZG3/2A2
pu

2
· C(k, ε).

6 NUMERIC EXAMPLES FOR VEPP-4M

Fig.4 presents the computational results (the curves) on the
beam energy spread for the VEPP-4M collider as a function
of the particle energy at different values of the coupling pa-
rameter k. For the sake of comparison, Fig.5 presents also
the experimental results (the dots) [4]. The best compli-
ance with the experiment is reached at k = 4, which corre-
sponded to the observed ratio of phase volumes. Fig.5 illus-
trates the difference in the results of computation of σE/E
for VEPP-4M in the one-dimensional (the dotted lines) and
two-dimensional (the solid lines) approximations. So, in
case of the ”round beam” (k = 1) the correction in the
beam energy spread and sizes is 20 %. The lifetime is prac-
tically the same because of the simultaneous change of the
sizes and ”loss function”.

Figure 4: Computed and experimental dependencies of the
energy spread on the particle energy in VEPP-4M.

Figure 5: The comparison of two approximations.

7 CONCLUSION

Taking into account the two-dimensional character of inter-
action of particles in the Touschek effect, we found a mod-
ified form of the function of distribution as to momentum,
diffusion rate and loss rate. We constructed universal char-
acteristic functions describing the effect at different values
of the coupling parameter and grading into known depen-
dencies in the flat beam limit. It was numerically shown by
the example of VEPP-4M that the correction to the one-
dimensional theory may be sensible in the beam energy
spread and sizes.
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