0-7803-7191-7/01/$10.00 ©2001 |EEE.

Proceedings of the 2001 Particle Accelerator Conference, Chicago

PORTING EPICS TO L4-LINUX BASED SYSTEM

J. Odagiri, N. Yamamoto and T. Katoh KEK, Oho 1-1, Tsukuba, Japan

Abstract

Experimental Physics and Industrial Control System
(EPICS) is now widely used for many accelerator control
systems. While the current and the former versions of
EPICS have required VxWorks to run core software on
Input/Output Controllers (IOCs), the next version (R3.14)
is to be portable to many other platforms.

Considering the recent trend toward Linux, it is an
attractive candidate for the port. However, the Linux
kernel cannot ensure real-time responsiveness because it
dose not preempt the execution from a process that is
running in the kernel. As an alternative, we adopted L4-
Linux, a port of Linux onto a real-time micro-kernel (L4),
as the platform. With some adaptation, L4-Linux allows
any EPICS thread to benefit from either the real-time
scheduling by L4 or the many functions of Linux.

The adaptation of L4-Linux to the real-time use, the
interface libraries between the IOC software and L4-
Linux, and a library to support the VMEbus are described.
A preliminary result of the measurement of interrupt
latency is also presented.

1 INTRODUCTION

EPICS consists of a set of software components and
tools that application developers use to create a control
system [1]. The basic components are:

e Operator Interface (OPI) — a UNIX based

wrokstation which can run various EPICS tools

¢ I0C - a front-end computer containing various I/O

modules and interface modules for extending other
I/O buses

e Local Area Network — the communication network

which allows the IOC and OPIs to communicate.

While the architecture makes EPICS scalable, it is
expensive to adopt EPICS for very small control systems.
If the workstation and the IOCs can be replaced with a
single PC, EPICS based system becomes a cost-effective
solution for a small control system.

Considering the recent progress of Linux, it seems to
be a promising platform for the PC based EPICS. Since
the OPI tools run under UNIX, there should not be
essential difficulties in porting them to Linux. On the
other hand, the IOC software (iocCore) was developed
based on VxWorks real-time operating system [2]. In the
next version of EPICS R3.14, however, VxWorks
application interfaces are to be isolated, and then, to be
replaced with Operating System (OS) interface libraries
[3]. With the implementation of the OS-interface libraries
provided, iocCore can run on multiple platforms. In fact,
the first release of R3.14 comes with the OS-interface
libraries for VxWorks, Linux and some other operating
systems.

In the next section, the limitation of Linux as a real-
time platform for iocCore is discussed. A solution based
on L4-Linux, a derivative of Linux, is discussed in the
later sections.

1183

2 10C SOFTWARE AND LINUX

EPICS iocCore has layered structure centered on the
run-time database, which is essentially a snapshot of the
I/O channels of the devices under IOC’s control, as
illustrated in Fig. 1.

Network
|
[Channel Access
[Run-time Database
[Device Access Layer

I/O Buses (VME/PCIISA)

Figure 1: Structure of iocCore

Above the run-time database, Channel Access (CA)
works as a “software bus” to communicate with the OPI
tools and other IOCs on the network. Below the run-time
database is the device access layer that faces the hardware
modules on the I/O buses. In order to support the
activities at both of the layers, a set of co-operative
threads work together by sharing global variables in a
single address space. The OS for iocCore thus must
provide threads that run in a user address space.

Since iocCore is a real-time system, the threads must
be scheduled by the urgency of their work. It applies
particularly to the threads of the device access layer.
Some data in a device may be lost if a thread that handles
the I/O operation responds late, or a software sequencer
may be running to control a device locally requiring
deterministic execution. The OS must schedule the
threads by their fixed priorities to meet the requirement.
In addition, the OS must ensure that the urgent threads are
not blocked by less urgent activities.

Unfortunately, the Linux kernel allows usual processes
to block an urgent process for considerable durations of
time. A process that performs IDE disk I/O can block an
urgent process for several tens of milliseconds [4]. The
possible durations of the blocking in general can be over
130 milliseconds on a 266 MHz class Pentium II
processor [5]. The main cause of the blocking is the non-
preemptive-ness of the Linux kernel. Once a process has
entered the kernel by issuing a system call, any other
process that gets ready to run is forced to wait for the
running process to go through the kernel. It applies even
if the process newly scheduled has a higher priority. In
order to reduce the durations of the blocking, it is
necessary to modify the Linux kemnel so that the process
running in the kernel invokes the scheduler frequently
giving a possible urgent process more chances to run. An
alternative of the approach is to bring an underlying
framework into the system in order to enable the
preemption to make [6], as discussed in the next section.

Proceedings of the 2001 Particle Accelerator Conference, Chicago

3 10C SOFTWARE ON L4-LINUX

3.1 What is L4-Linux?

L4-Linux was developed at Dresden Institute of
Technology in corporation with IBM Watson Research
Center [7]. It is a port of Linux kernel as a server task on
top of a real-time micro kernel named L4, or its successor
named Fiasco [8], as illustrated in Fig. 2.

-

IPC
L4 real-time micro-kernel

Figure 2: EPICS on L4-Linux

L4 is a preemptive micro kernel, which provides its
tasks with the only three primitives, threads, address
spaces, and Inter Process Communication (IPC). Each L4
task has its own address space in which up to 128 of
threads can run.

Linux processes are implemented by putting the first
thread of a L4 task to use for the “main”. The Linux
processes call the Linux server for a service through an
IPC call. L4-Linux is compatible with standard Linux at
the binary level, provided with an emulation library that
transforms a Linux system trap (INT 0x80) into the IPC
call. A page fault of a process is also transformed into an
IPC with the Linux server. The Linux server manages the
page fault the same way as standard Linux does.

Every Linux process, being a L4 task, can also issue L4
system calls.

3.2 L4-Linux as a real-time platform

L4-Linux was designed as a partner of a real-time
system that is running on the same computer, and hence it
in itself is not a real-time system. However, if a process of
L4-Linux is given a priority higher than that of Linux
server, it can preempt the execution from the Linux server,
because both the process and the Linux server are
independent tasks under L4’s scheduling. Assuming the
preemption has happened, if the process calls Linux for a
service, it has to be blocked waiting for Linux to get the
previous work done and accept the call. On the other
hand, if the process does not rely on Linux, it can
continue with its work under L4’s scheduling.

The latter case applies to a thread that performs I/O at
the device access layer of iocCore. It just does something
primitive when it is triggered by an interrupt, such as
reading or writing data from/to the registers of the device,
moving the data from some memory address to another,
operating semaphores to notify the event to another thread,

1184

and so on. They can get the urgent work done without
calling Linux, hence without being blocked by the Linux
server. On the contrary, the CA relies on Linux for the
TCP/IP socket services. If a thread that works for CA has
preempted the Linux server, the thread ends up returning
the execution to Linux when it calls Linux for the service.
Consequently, the preemption makes a difference only for
the threads of the device access layer, where high
responsiveness is really needed.

Once the CPU has accepted an interrupt that triggers an
urgent thread, the L4 kernel switches the execution to the
urgent thread in a predictable time. However, the interrupt
itself can be blocked because the Linux server has critical
sections, which are protected by disabling interrupts. If
the interrupt comes in when the Linux server is executing
one of the critical sections, the preemption is delayed
until the execution leaves the critical section. The
standard Linux kernel disables interrupts for durations up
to several hundreds of microseconds [6]. The duration can
be even longer in special cases [5]. It also applies to the
Linux server of L4-Linux. In order to ensure the pre-
emption to happen within 100 microseconds or less, it is
necessary to adopt another method for the protection of
the critical sections. In L[4-Linux, a “Linux interrupt
handler” is just another thread of the Linux server task. A
real interrupt handler in the L4 kernel schedules the Linux
interrupt handler when the interrupt occurs. All of the
Linux interrupt handlers as well as the Linux server can
be blocked without disabling interrupts as a result. The
critical sections can be protected by just raising the
priority of the thread that is executing a critical section.
The replacement of the method to protect the critical
sections is an improvement to be done in the future.

3.3 Required Modifications

The main modification required to launch real-time
threads was to allow them to have a priority higher than
that of the Linux server. In addition to it, another
modification was required in relation to the virtual
memory management.

In L4-Linux, there are two different sets of page tables
for a virtual memory space of a process. One is in the
Linux server and the other is in the L4 kernel. The former
is the one Linux manipulates to decide how it uses
memory. It is logical in the sense that it is not connected
to the Memory Management Unit (MMU). The latter is a
set of physical page tables that the MMU refers to. It is
empty when a process is created. Every time the process
causes a page fault, an entry of a physical page table is
updated by referring the corresponding logical page table,
making the both sets of tables equivalent.

The behaviour of the memory management becomes
somehow different with standard Linux, for example, in
case a process has issued the “mlockall” system call to
make itself memory-resident. After the pages have been
swapped in, and the logical page tables have been
modified, the system call returns leaving the physical
page tables unchanged. The process still can cause page

Proceedings of the 2001 Particle Accelerator Conference, Chicago

faults just to update the physical page tables. This does
not matter as long as the system is used as a time-sharing
system. However, the IPCs associated with the page faults
break the assumption that the real-time threads do not rely
on the Linux server while they are working on their
urgent work. In order to cope with the problem, an L4-
Linux specific system call is created to make Linux flush
the entries of the logical page tables down to the physical
ones.

3.4 OS-interface libraries for L4-Linux

This subsection describes our implementation of some
of the EPICS OS-interface libraries for L4-Linux.

The thread library provides iocCore with a multi-thread
environment that schedules threads by their fixed priority.
As mentioned earlier, an 14 task can have up to 128
threads in its address space. It seems to be efficient to put
these threads to use for the library. Unfortunately, this
scheme does not work because the Linux server does not
distinguish a thread from the others in an L4 task. It
implies that only one thread in an L4 task can call the
Linux server at a time. Instead, the “clone” system call is
available to create “Linux threads”. In this case, a Linux
thread corresponds to an L4 task, which has its own
address space, i.e. the physical page tables. Created
through the clone system call, a Linux thread shares the
page tables with its creator in the Linux server, not in the
L4 kernel. The Linux thread becomes really a clone of its
creator when it fills out its own physical page tables by
referring the shared logical page tables.

The semaphore library provides binary semaphores and
mutual exclusion semaphores. Since the IPC that L4
offers is synchronous type, semaphores can be
implemented on top of the IPC. A thread sleeps by
waiting an [PC message when it tries to take an empty
semaphore. Another thread wakes it up by sending the
IPC message when it gives the semaphore. The IPC can
also take on the timeout handling of the semaphore
operations. Critical sections in the implementation need to
be protected by disabling interrupts.

In the libraries, functions were implemented by using
only L4 system calls as far as real-time threads make
regular use of them. The other functions supposed to be
used only in the initialization step may invoke some of
the Linux system calls.

4 VME-BUS SUPPORT

The main motivation of this port was to run EPICS on
PCs for small control systems. On the other hand, if the
system can run on VME board computers, it can be also
used for large scaled control systems. In fact, VME single
board computers compliant with the PC specifications
have been released from several manufactures [9]. In
addition, a Linux device driver for the Universe
PCI/VME bridge chip was developed by Hannappel [10].
These circumstances encouraged us to port the L4-Linux
based EPICS to a VME CPU board. For this purpose, a
VME support library was developed based on the OS-

1185

interface libraries and the Universe driver. Together with
the OS-interface libraries, the VME support library
provides essential functions required to port the existing
EPICS drivers to the system. A thread created in the
ported drivers is to run as a Linux thread, which was
described in the previous section.

5 MEASUREMENT OF LATENCY

To confirm the validity of the scheme, interrupt latency
was measured on a VME CPU board, which has a Celeron
300 MHz processor. A process that causes heavy 1/O load
on an IDE disk was used as a background [4]. With this
background running, a thread got the CPU clock-count
and issued a command to a VME module, which caused
the interrupt. Triggered by the interrupt, an interrupt
handler (another thread connected to the interrupt) got the
CPU clock-count again and cleared the interrupt. Iterating
the above steps, the latency, the difference of the two
clock-count values, was measured. The latency in the
worst case was found to be about 800 microseconds in 10°
times of trials.

6 CONCLUSIONS

As a platform for the PC-based EPICS, L4-Linux was
adopted and modified to launch real-time threads. The
essential functions of both OS-interface libraries and a
library to support the VMEbus were implemented.

By using the libraries, interrupt latency was measured
on a PC compliant VME CPU board. The latency in the
worst case was less than one millisecond. It indicates that
the real-time threads actually preempted the execution
from the Linux server. The dominant factor of the latency
should be the critical sections executed by the Linux
server with disabling interrupts.

7 ACKNOWLEGEMENTS

One of the authors, J. Odagiri, would like to thank Y.
Yasu and K. Nakayoshi of the online group at KEK for
their helpful suggestions on the design of the VMEbus
support library and the method to measure the interrupt
latency.

8 REFERENCES

[17] http://www.aps.anl.gov/epics/

[2] http://www.windriver.com/

[3] M. Kraimer et.al., “EPICS: Porting iocCore to
Multiple Operating Systems,” [CALEPCS’99, Trieste,
Italy, Oct. 1999.

[4] http://www-online.kek.jp/~nakayosi/

[5] http://www.mvista.com/realtime/

[6] http://www.rtlinux.org/

]

]

[7] http://os.inf.tu-dresden.de/[4/LinuxOnl4/
[8] http://os.inf.tu-dresden.de/fiasco/
[9] http:/www.vmic.com/

[10] http://lisa2.physik.uni-bonn.de/~hannappe/

