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Abstract 

We have manufactured a total of six β=0.64, 700-MHz 
5-cell cavities.  The APT (Accelerator Production of 
Tritium) specification requires Q0 > 5 x 109 at an 
accelerating field of 5 MV/m. So far, the results of 
vertical tests have shown maximum accelerating fields of 
12 MV/m (peak surface field of 41 MV/m) and maximum 
low-field Q0 of 3.6 x 1010 at 2 K.  The present limitations 
are available input power, field emission and quench. This 
type of cavities will also be used for an ADTF 
(Accelerator-Driven Test Facility) for AAA (Advanced 
Accelerator Applications) project. 

1 INTRODUCTION 
The APT accelerator, if it is built, is a 100-mA, 1.7-GeV 

CW proton linac [1].  A number of papers have been 
published on the development of APT superconducting 
cavities, power couplers and cryostats in the past [2-23].  
Since APT was named as a backup option to the 
commercial light-water reactor program in December 
1998 [24], the ED&D activities shrank significantly.   
Tests, however, of all the six 700-MHz 5-cell cavities 
manufactured as part of prototyping efforts have been 
performed in vertical cryostats at LANL and TJNAF 
(Thomas Jefferson National Accelerator Facility).  This 
paper presents the results of these tests as well as brief 
future plans. 

2 CAVITIES 
Table 1 shows the names, niobium suppliers, 

manufacturer and the initial thickness of the niobium of 
all the cavities.  The LANL cavity was made in house at 
LANL.  AES stands for Advanced Energy Systems, an 
American company.  The last four cavities were 
manufactured by CERCA, a French company, and the 
cavities were named after popular female names of the 
countries where niobium suppliers are located. 

Table 2 shows the parameters of the cavity.  CERCA 
cavities were manufactured after LANL and AES cavities 
and their parameters are slightly different due to the 
increase in radius of the end beam pipe from 6.5 cm to 8 
cm.  This modification was made to obtain sufficient 
coupling between power coupler and beam [26].   

Cavities are made of RRR=250 niobium and their inner 
surfaces were chemically etched 150 µm at the 

manufacturers.  Figure 1 shows a cavity installed in the 
cryostat insert. 

 
Table 1: List of all the APT Prototype Cavities 

Cavity 
Name 

Nb 
Supplier 

Manufacturer Nb 
Thickness 

LANL Teledyne 
Wah Chang 

LANL 3.175 mm 

AES Wah Chang AES 3.5 mm 
Ayako Tokyo 

Denkai 
CERCA 4 mm 

Eleanore Wah Chang CERCA 4 mm 
Germaine Heraeus CERCA 4 mm 
Sylvia Wah Chang CERCA 4 mm 

 
Table 2: Parameters of APT 5-cell Cavities 
Frequency 700 MHz 

β 0.64 
R/Q 392(374) Ω 

Geometrical Factor 149 Ω 
Ep/Eacc 3.381 (3.272) 
Hp/Eacc 69.6(68.6) Oe/MV/m 

Note: the values in the parentheses are for LANL and 
AES cavities. 
 

 
Figure 1: APT 5-cell cavity set on the cryostat insert. 
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3 SURFACE TREATMENT AND 
PREPARATION AT LANL 

After delivery to LANL, the cavities were chemically 
etched again with a standard BCP (Buffered Chemical 
Polishing) solution of 1:1:2 [3].  Then, they were rinsed 
with high-pressure deionized water at ~950 psi in a class-
100 clean room and assembled with couplers, flanges and 
vacuum valve.  Once sealed in the clean room, the cavity 
was moved to a measurement room, set on the cryostat 
insert, and pumped down and leak checked.  Before 
cooled down, the cavities were baked at 150 °C for 48 
hours.  It should be noted that no cavities were baked at 
temperatures higher than this before testing. 

4 TEST RESULTS 
Figure 2 shows the Q-E curves of all the cavities.  The 

tests conducted at TJNAF are marked as JLAB with the 
legend.  The data for Eleanore cavity between 4 MV/m 
and 11.5 MV/m are missing since we could not take the 
final data due to damage to the driving coupler cable. As 
for the LANL cavity, there were difficulties in performing 

the final equator weld in the middle cell and we found the 
Q0 drop shown in Fig. 2 was caused by some defect at this 
equator from heating detected by a temperature sensor.  
Before the LANL cavity was tested, low-field Q0 obtained 
at LANL were lower than that  recorded by TJNAF.  We 
have been investigating the cause of these differences.  
Rinsing process right after BCP might have contributed to 
the better Q0 since the LANL cavity was filled with DI 
water and kept overnight before HPR (High Pressure 
Rinse). 

4.1 Limitations 
At LANL, the available RF power was limited to ~ 250 

W.  Degradation of Q0 due to field emission limited 
performance, although it appeared that most of the 
cavities would have quenched at fields slightly higher 
than their maximum fields due to heating at defects or 
heating by electron bombardment on the surface.  At 
TJNAF, however, they stopped measurement of the AES 
cavity so as not to damage the driving coupler cable. 
Germaine and Sylvia cavities were limited by quench. 

 

Best results of all the APT 5-cell cavities (up to 1/29/01)
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Figure 2: Vertical test results of all six 5-cell cavities developed for APT.  Test temperature was 2 K. 
 

5 DISCUSSION 
The results shown in Fig. 2 are the best results for each 

cavity.  Some cavities needed extra chemical etching 
(100-200 µm), RF processing and/or helium processing, 
although processing did not take more than a few hours.  
The problem we have to solve to get higher gradients for 
the next project such as AAA, that would want to operate 
at Eacc as high as 10 MV/m is, field emission.  

Unfortunately, we have not had good diagnostic tools, 
such as temperature and X-ray mapping of the cavity, to 
determine the loss distribution inside the cavity and 
identify the cause of Q0 drops.   

6 FUTURE PLANS 
We are planning to identify the causes of field 

emissions that appear in most of the cavities using a 
temperature and X-ray mapping system being developed 
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at LANL [25].  Moreover, a new 600 W power amplifier 
will be received soon and we will be able to do CW/pulse 
processing at higher power. In addition, if funded, we 
would like to perform a �guided repair� on the LANL 
cavity that indicated some defect on the equator region of 
the middle cell. 

7 SUMMARY 
The performance of all the six prototype APT 700-MHz 

5-cell cavities is presented.  All the cavities surpassed the 
APT goals with ample margin.  The achievement of these 
results with relatively large 5-cell cavities (surface area = 
0.858 m2) and without high-temperature heat treatment (> 
150 °C) is remarkable. 

For the ADTF, however, the goals will be Eacc = 10 
MV/m at Q0 = 5 x 109.  To achieve this goal with enough 
margins for reliable operation, we will have to solve the 
field emission problem and reach a maximum field of 13-
15 MV/m. 
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