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Abstract

The propagation of HOM-energy along an accelerator
channel can be described in terms of frequency dependent
scattering (S-) parameters of the individual elements of the
channel. These S-parameters can be measured for each element
(cavities, couplers, etc.) separately. Once they are known, it is
possible to predict the behaviour of any arbitrary combination
of elements. As long as only one waveguide mode propagates
in the connecting pipes, standard RF calibration schemes are
applicable methods to measure the three S-parameters of the
representing two-port. In the presence of additional modes -
corresponding to higher frequencies - S-matrices of higher
dimensions have to be determined. Therefore we have been
developing an experimental method which allows for
determination of S-parameters in the regime of waveguide
ports with several propagating modes. The principles of the
method as well as results from measurements of normal
conducting TESLA cavity models are presented.

Introduction

The TESLA HOM-damping scheme consists of two
couplers attached to either side of each cavity and a single
absorbing element in a 8-cavity module [1]. The latter is
intended to dissipate HOM-power propagating through the
accelerator. This leads to the question of how to measure RF
power transmission in a complicated structure at frequencies
that may allow for the appearance of more than only the funda-
mental waveguide mode. Therefore the problem exceeds the
capabilities of the usual two-port S-parameter measurement,
which is only appropriate for a single propagating mode. Even
then the question of de-embedding the test devices properties
from the measurement results, being modified by the necessary
coaxial line-waveguide-adaptors, remains, but it is similar to
calibration problems in pure coaxial setups. If more modes are
present in the waveguides there was to our knowledge no
practicable method available to measure a multidimensional S-
matrix at an arbitrary (for a given number of modes) fixed
frequency (or a spectrum of them).

We performed measurements in the frequency range with
only the fundamental mode propagating (2.25  GHz to 2.95
GHz for 78  mm diameter TESLA beam pipe) using a standard
Through-Short-Delay-calibration method (eg. [3]). For higher
frequencies we have been developing an alternate method that
has been tested now with two waveguide modes for a device
measurement and with three modes for a calibration of an
adaptor at single frequency points (see [4] for details).

Measurements with one mode

Fig. 1 shows results from single mode S-parameter
measurements of two 9-cell cavities (compare [2] for details)
using a TSD-method for the adaptor calibration. With the

knowledge of the individual S-matrices one can calculate the
result expected for two cavities chained together. This
calculation is plotted in Fig. 1 together with the measured
transmission of the chain.

In Fig. 2 the calculated transmission through four
identical cavities is plotted. One observes a behaviour well
known from filter cascades: The slopes increase with the
length of the chain.
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Fig. 1 Transmission through a chain of two TESLA 9-cell
copper cavities: Calculated from single cavity
measurements and measured directly (two curves)
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Fig. 2 Transmission through a chain of four TESLA 9-cell
copper cavities, calculated from single cavity
measurement

Measurements with more than one mode

In the case of more than one propagating mode the S-
matrix of an adaptor with one coaxial line (index 0) and n
waveguide ports may be written as:

 
A = A 00 A 01 A 0 n

A 01

A 0 n

A 11 A 1 n

A 1 n A n n

= A 00 AT

A A
(1)

Herein the scalar A00 describes the reflection at the coaxial
port, the vector the coupling from the coaxial line to each
waveguide mode and the submatrix the reflection at the wave-
guide flange, that may couple every mode to each other. The
matrix is symmetric due to the reciprocity of the device. Like
in the single mode case, the problem of determining the
properties of a device splits into the calibration step - i.e.
determination of the adaptors - and the measurement once the
adaptors are known. Considering the number of unknowns (10
in the case of two modes at two waveguide ports) it becomes
clear, that a single measurement with two completely known
adaptors, which gives three numbers (two reflection, one
transmission quantity), is not able to provide a sufficient
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amount of information. Thus one has to use different pairs of
known adaptors for a number of subsequent device
measurements. To keep the calibration effort as small as
possible we take only two fixed adaptors and combine them
with various delay line lengths (see Fig. 3). In the same
manner we use a short (which is one of the very few reliable
broadband standards in waveguide technique) and different delay
line lengths to calibrate the two adaptors.
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Fig. 3 Schematic drawing of setups used for adaptor
calibration with delayed shorts and for measurement.
Small letters denote the signals at all connection
planes, index 0 corresponds to the coaxial line.

Basic Equations

If we consider a setup with two adaptors A and B, a test
device C and two connecting waveguides with lengths L1 and
L2 (see Fig. 3), we are able to write down all signals, related
by S-matrices:

 b 0

b
=

A 00 AT

A A
a0
a , g0

g =
B00 BT

B B
h 0

h
(2a,b)

 a
d

= 0 E(L 1)
E(L 1) 0

b
c , e

h
= 0 E(L 2)

E(L 2) 0
f
g

(2c,d)

 c
f

= C11 C12

C12
T C22

d
e (2e)

All the submatrices are (n x n)-dimensional, especially holds
for the waveguide of length L and the phase constants γj:

  
E(L) =

e± γ1 L 0 0
0 0
0 0 e± γn L

(3)

Using an additional abbreviation
 H11 H12

H12
T H22

= E(L 1) 0
0 E(L 2)

C11 C12

C12
T C22

E(L 1) 0
0 E(L 2)

(4)

and with respect to the fact, that the complete setup is just a
coaxial line two port with a (2 x 2)-S-matrix

  b 0
g0

= Γ1 T
T Γ2

a0
g0

(5)

one finds after some calculations in order to eliminate all
signal quantities (see [4]):

  Γ1 T
T Γ2

= A 00 0
0 B00

+

+ AT 0
0 BT

H11 H12

H12
T H22

1 ± A 0
0 B

H11 H12

H12
T H22

( ± 1)
A 0
0 B

(6)

We shall refer to (6) as the "complete model".

Geometric Series Expansion

Equation (6) can be rewritten using
 1 ± M ( ± 1) = 1 + M + M2 + M3 + ... (7)

(we skip the discussion of the mathematical conditions)
  Γ1 T

T Γ2
= A 00 0

0 B00
+ AT 0

0 BT
H11 H12
H12

T H22
+

H11 H12
H12

T H22

A 0
0 B

H11 H12
H12

T H22
+

+
H11 H12
H12

T H22

A 0
0 B

H11 H12
H12

T H22

A 0
0 B

H11 H12
H12

T H22
+ A 0

0 B
(8)

as a geometric matrix series. This expansion is useful as well
as an approach for the numerical solution of (6) with a set of
measurement data as for its physical interpretation. We denote
(8) as the "reduced model". To simplify discussion, we restrict
ourselves to the calibration problem, which is a special case of
(6) (set all elements of C to 0 except the upper left block
which is the negative identity). Then the complete model is

  Γ1(L 1) = A 00 ± AT E2(L 1) 1 + A E2(L 1)
( ± 1)A (9)

and its reduced version reads like:
  Γ1(L 1) ≈ A 00 ± ATE2(L 1) A + ATE2(L 1) A E2(L 1) A (10)

Evaluating this in the case of two modes
  Γ1(L 1) = A 00 ± A01

2 e± 2 i γ1L 1 + A02
2 e± 2 i γ2L 1 +

+ A01
2 A 11 e± 4 i γ1L 1 + A02

2 A 22 e± 4 i γ2L 1 +
+ 2 A 01 A 02 A 12 e± 2 i γ1 L 1 + L 2 ±

(11)

shows that each term describes a possible signal path from ini-
tial incidence to final detection. The same holds for (8) but the
expressions are much more complicated. With the arithmetic
derivation of (6) we just did a summation over all signal parts,
written in a very compact way. To solve a set of equations (6)
with measurement data, we fit the data depending on L1, L2 in
the reduced model using the set of oscillations with wave
numbers, given by the combinations of the known phase
advances. The amplitudes of the lowest and therefore dominant
frequencies are functions easy to be solved for the S-parameters
(compare (11)) (due to some quadratic expressions some of the
signs remain ambiguous). This procedure works as well for an
adaptor calibration as for a complete measurement; in the latter
case we have to fit with respect to two parameters.

Measurement setup

The main effort in the setup had to be spent in the
realization of the various delay line lengths. This has been
done by building two adaptor systems sliding in two fixed
waveguides. They are driven by stepping motors with spindles
that allow for a nominal position resolution of 6.25 µm. The
RF equipment consists of a HP8753C-6  GHz-network
analyzer. The components are computer controlled using
LabVIEW™, the data evaluation is done with Mathematica™.

Calibration results with three modes

One of the adaptors has been measured at 4.5  GHz with
three propagating modes (TE11, TM01, TE21). The results are:

 A =
± 0.145 + 0.356 I 0.003 ± 0.080 I 0.022 ± 0.110 I ± 0.026 ± 0.012 I

0.003 ± 0.080 I 0.459 ± 0.517 I ± 0.306 ± 0.202 I ± 0.071 + 0.061 I
0.022 ± 0.110 I ± 0.306 ± 0.202 I 0.199 ± 0.438 I ± 0.161 + 0.147 I

± 0.026 ± 0.012 I ± 0.071 + 0.061 I ± 0.161 + 0.147 I ± 0.562 ± 0.773 I
We insert these parameters into the reduced and the complete
model (Fig. 4) plotted against L1 and add the measurement
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points. We observe a sufficient agreement of the reduced model
and a very good one of the complete model. This may be
explained by the limited amount of wave numbers contributing
in the reduced model, whereas the complete model covers all of
them up to an infinite degree of multiple reflection.

Introducing a normalized error function
  E = 1

N
m j L j ± Γ1 L j

m j L j

2

Σ
j = 1

N
(12)

we studied the error-sensitivity of the result by adding some
random offset within a certain part of each parameter value.
Fig. 5 shows the result of 100 attempts together with the error
function of the unperturbed S-parameters. We found the
majority of attempts revealing an increased error, confirming
that the unperturbed S-parameters are a very good (but not
optimal) approximation to the real values.
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Fig. 4 Value of input reflection factor of adaptor A at
4.5  GHz against L1; measured points (dots) together
with reduced (upper curve) and complete model
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Fig. 5 Normalized error function (12) of adaptor S-para-
meters (normal line) with homogeneously distri-
buted random offset of 3% for 100 attempts (dots);
dashed line: average of all attempts

Measurement results with two modes

The S-matrix of the TESLA 9-cell copper cavity has been
measured at 3.0968  GHz. At this frequency the TE11 and the
TM 01-mode propagate. After the calibration runs of the
adaptors (we skip these results) we find from  (8):

 C =
0.309 + 0.287 I ± 0.050 ± 0.049 I 0.310 ± 0.735 I ± 0.034 ± 0.016 I

± 0.050 ± 0.049 I ± 0.264 ± 0.898 I ± 0.019 + 0.039 I 0.004 ± 0.004 I
0.310 ± 0.735 I ± 0.019 + 0.039 I 0.469 + 0.356 I ± 0.076 ± 0.047 I

± 0.034 ± 0.016 I 0.004 ± 0.004 I ± 0.076 ± 0.047 I ± 0.395 ± 1.030 I
The reason of the value of C44 being about 20% greater 1

is not yet clear. Probable causes might be the small number of
measurement points (13 for L1 and L2, leading to an 13x13-
array) or a temperature drift, that has been observed during the
measurement time of about 1 hour. Again, we tested the
complete model and found a sufficient though not extremely
good agreement (Fig. 6, 7).
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Fig. 6 Typical plot of the transmission of the complete
setup for fixed L2 against L1: value (left) and argument
(right curve)
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Fig. 7 Typical plot of the input reflection at port B of the
complete setup for fixed L1 against L2  (comp. Fig. 6)

Conclusion and Outlook

The TSD-calibration technique is a useful tool to calibrate
coax-waveguide-transitions if only one mode is propagating.
To expand measurements in the frequency range of several
waveguide modes we have been developing a new method for
multimode S-parameter measurements showing encouraging
results in first tests. These evaluations will continue to specify
the capabilities of the method. In further investigations we
shall try to resolve additionally degenerated modes, especially
different polarisations.
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