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Abstract

It is usually assumed that beams are partially space charge
compensated for the design of high intensity, low energy beam
transport. Such continuous beams are confined in space by
means of magnetostatic lenses, the transverse matching into
the RFQ accelerator being achieved with solenoids. Along this
low energy transport, beam neutralization is kept almost
constant, but severe problems can appear at the entrance of the
RFQ where longitudinal bunching takes place. The electric
field pulls out the neutralizing electrons, leading to a
redistribution of the charged particles. We analyze theoretical
solutions of this phenomenom in a self-consistent approach in
view of minimizing emittance growth and halo development
that could result.

1. Introduction

High perveance proton sources are needed to produce
intense beams for industrial projects like TRISPAL.

In the low energy part of the accelerator machine the
transport of such beams is critical up to kinetic energies of a
few MeV, because the beams are space charge dominated.
It was proposed for a long time to transport such proton beams
in a charge compensated regime, where the protons are
neutralized by trapped electrons.

This well known effect occurs naturally when the residual
gas pressure is relatively high as it is the case after the ion
source, even if the gas flowing from the source is pumped out
efficiently.

The protons ionize the molecules of the residual gas and
produce electrons which are trapped in the collective potential
well of the beam.

As this was observed in many experiments [1–3], the beam
tends to be partially neutralized, depending on characteristic
parameters and vacuum pressure.

This is often a favorable situation since the transported
beam current can be enhanced correlatively, and this saves
power for the external restoring forces which insure the
confinement of the beam; the companion electrons screen the
primary beam, diminishing the net defocusing force due to
coulombian repulsion and participate to the confinement of the
whole beam.

But these time dependent mechanisms of neutralization are
not necessarily homogeneous in space: they can produce axi or
non-axisymetric instabilities which contribute by non-linear
effects to energy redistribution into the beam. This drives the
density to a more or less steady profile [4].

Emittance degradation and particle losses in the low energy
part of the machine are a real concern for machine designers, it

is thus important to be able to predict the optical qualities of
the beam and emittance growth.

This is why transport must be simulated using a refined and
a self-consistent description.

In this paper, we first describe the system from relevant
parameters and time scales of the model that depend on
physics: we then derive a set of self-consistent equations for
a 1D1/2 model. After analyzing theoretical solutions, we draw
conclusions for future studies.

2. Model and hypotheses

We consider a cylindrical DC beam with parameters:
T0 =100 keV, I0 = 100 mA, S0 = 1 cm2 (R0  a5 10–3 m).

The study is restricted to a region surrounding a waist where
external confinement can be absent. Magnetic focusing is
assumed ahead and behind this region; mechanical walls are
absorbent and grounded.

xx The primary beam (p) is assumed cold, hence its phase
space distribution function has the following expression:

fp(r,v,t)= np G(v-  vp) (1)

where v is reduced to the axial velocity vp; with our parameters
np = 1.41015 m-3.

x The residual gas (g) mainly consists of hydrogen
molecules (H2 at about 10–3 hPa) which are considered at rest
compared to the other moving species. With these parameters
ng = 3.51019 m–3.

Physical processes. We assume that the only source of
secondary charges is the gas ionization:

p  +  H2     o     p  +  H2
+  +  é (2)

1       2                      3       4

and the generated plasma is composed of four species where 1,
2 are the primary species and 3, 4 are the secondary ones.

From the processus (2), we can estimate the electron
density variation versus time:

dn

dt
n n ve

i g p p= σ (3)

and deduce an approximate neutralization time scale.
WN =(Vi ngup)

–1 assuming that the density ng and np are near
constants [5]. With our parameters, WN  t 330 ns.

We consider that elastic scattering cross section at large
energy transfer is small compared to the the ionization one, it
is thus assumed that residual gas depletion is inexistent ahead
of the beam at any time scale of our study provided:

ni  d  np  ��  ng

The radial potential I of a primary beam with a parabolic
density profile U can be deduced from the Poisson equation:
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Supposing that this potential vanishes on the wall of the
vacuum chamber, we obtain the following expressions:
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This global potential is attractive for the electrons as long
as the total neutralization is not reached. In the same time the
secondary ions are continuously expelled transversally.

At equilibrium, the ion radial flux balances their creation
while electrons are confined in the potential well.

Since electrons are more mobile than ions, electron
dynamics will govern this potential: a test electron gaining
some energy will escape the well if the potential well is not
deep enough. It is exactly as if it evaporates.

When evaporation balances creation a dynamic equilibrium
seems to exist. To understand this balance, let us assume for
instance that potential depth decreases for some reason;
evaporation is then eased and the ions will be expelled slower
to the wall, then the ion flux will start to decrease. While
electron density decreases, ion density increases and the total
potential will return to its previous value.

Secondary particle dynamics. In a first stage, the ionization
of the residual gas by primary protons is only taken into
account as the main inelastic process. But charge exchange,
excitation and dissociation processes will be included in a
second stage to interpret more refined experimental results.
Potential of the electrons: once equilibrium is reached, the
continuity equation applied to ions gives:

ni = R0vpσi ngnp
mi

8eφ(R0 )
(7)

where I(R0) is the potential at the border of the beam, and is
also the minimum energy of the electrons which evaporate.
The relation (7) shows that the knowledge of the energy
spectrum of the ions  leads to the estimation of R0  and I(R0).

For a partially neutralized beam, the typical value is
I(R0) # 20 V.
Screening effects: To estimate the screening effects we assume
that the beam is quasi-neutralized, ne�np so we can calculate
the Debye length:

λ d =
ε0Te

nee
2 ≅ 10−3  m.

This estimation of the Debye length value shows that screening
effects will not prevent an external electrostatic field from
expelling rapidly the trapped electrons.
Velocity distribution functions of the secondaries:
Experimental data and theoretical calculations for the total and
differential cross sections can be found in Refs. [6–9].

It comes out that:
x� the primary protons have negligeable deviation from

incident trajectory and their velocity is almost unaffected,
x� the secondary ions have a recoil energy less than 10 eV,
x� the electrons created by ionization have energies picked at

0 eV but 50% of them have energies higher than 18 eV.

Usually, it is admitted that both ions and electrons are
created at rest, this corresponds to the double differential cross
section:

dσ i
dEedθdϕ

= σ i δ(pe) (8)

where pe represents the momentum of electrons created at
energy Ee and with no energy transfer taken into account.
In our model, we take some more realistic initial condition:
ions are still created at rest but electrons have a mean energy
of about 10 eV. As mentionned before, the differential cross
section is then:

dσi
dEe

=
σ i
T

e

exp(−
Ee
Te

) (9)

and their velocities are distributed as a maxwellian distribution
function with a temperature Te. This temperature will be an
adjustable physical parameter which can be checked by
experiment.
Relaxation time: the velocity distribution function of the
secondary particles is driven to thermodynamic equilibrium by
the binary collisions: e-e collisions drive the distribution to a
maxwellian, while e-i and e-g collisions participate essentially
to the isotropisation of the velocities. The relaxation time is
then expressed by

τe
e/ e ≈

3.51011

Λne
Te

3 /2 (10)

where / is the Coulomb logarithm.
With τ τe

e e

Nms/ = >>3  one can conclude that neutralization
equilibrium is reached well before electrons are thermalized.

3. System of equations

The system of equations for the different species can be
resumed as follows:

x� for the electrons

dfe
dt

= Ce
iz( fe)

where C fe

iz

e( )  is the collision operator and can be calculated
from the continuity equation by:

Ce
iz ( fe(r,vr ,vθ)) = ngnp(r )vp

dσ i

dvr dvθ
(11)

This gives the number of electrons of velocity (vr,vT) created
per unit volume in the phase space and per second.
From the relation (11 ) it is easy to derive the final form:

dσ
dvr dvθ i

=
σ ime

2πTe
iz exp(− me(vr

2 + vθ
2)

2Te
iz ) (12)
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x� for the ions

dfi
dt

= Ci
iz ( fi )

where C fi

iz

i( ) is the collision operator and can be calculated
by the same expression as (9) to give:

dσ i

dvr
= σ iδ(vr ) (13)

We obtain finally at stationnarity [12]:

vr
∂fe
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+ e
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∂φ
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−
e

2mp

∂φ
∂r

∂fi
∂vr

= ngnp(r )vpσi δ(vr ) (15)

∆φ(r ) = − e
ε0

(np(r ) + ni (r ) − ne(r)) (16)

φ(rc ) = 0

For the closure of the system, we suppose that fi and fe are not
correlated, but the two kinetic equations are coupled by the
Poisson equation. For the boundary conditions, we take
absorbent walls. This complete set of equations is to be solved
by numerical techniques.

Conclusion

A space charge neutralization may be needed to keep small
the emittance degradation in a transport system made of
magnetic lenses.

But this can be done only in a some dynamical equilibrium
between the present charge species, where the degree of
neutralization is kept near a constant value.

If this equilibrium cannot be maintained, a proton density
redistribution will happen when the beam enters into the RFQ;
the electrons participating to the self-confinement will be
rapidly released by the electrostatic field.

In this case, the adiabatic matching and bunching into the
RFQ might fail.

It is too early, at this stage of the study to draw definitive
conclusions related to our concern.

But we saw that the study of the dynamics of the
companion electrons is essential to understand the mechanisms
of the equilibrium during the transport, and the rapid
decompensation at the entrance of the RFQ.

We derived a 1D1/2 model close to reality since it
represents a cylindrical beam which is transported in an
axisymetric magnetic system.

The assumed parameters like Te and I(R0) and the density
profile will be measured experimentally to refine the initial
conditions and hypothesis.

The numerical simulations that we are presently carrying
out, will provide the density profile of the protons and
electrons at equilibrium.
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