
BEAM DYNAMICS SIMULATIONS USING A PARALLEL VERSION OF PARMILA

Robert Ryne
Accelerator Operations and Technology Division

Mail Stop H 817
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

The computer code PARMILA has been the primary tool for
the design of proton and ion linacs in the United States for
nearly three decades. Previously it was sufficient to perform
simulations with of order 10000 particles, but recently the
need to perform high resolution halo studies for next-
generation, high intensity linacs has made it necessary to
perform simulations with of order 100 million particles. With
the advent of massively parallel computers such simulations
are now within reach. Parallel computers already make it
possible, for example, to perform beam dynamics calculations
with tens of millions of particles, requiring over 10 GByte of
core memory, in just a few hours. Also, parallel computers are
becoming easier to use thanks to the availability of mature,
Fortran-like languages such as Connection Machine Fortran
and High Performance Fortran. We will describe our
experience developing a parallel version of PARMILA and the
performance of the new code.

Introduction

Many countries are now involved in efforts aimed at
developing high power linacs for transmutation of radioactive
waste, disposal of plutonium, production of tritium, and as
drivers for next-generation spallation neutron sources. For
these projects, high-resolution modeling far beyond that which
has ever been performed in the accelerator community will be
required to reduce cost and technological risk, and to improve
accelerator efficiency, performance, and reliability. Such
accelerators will have to operate with extremely low beam loss
(0.1-1 nA/m) in order to prevent unacceptably high levels of
radioactivity. High resolution simulations using on the order of
100 million particles will be needed to help ensure that this
requirement can be met. Such simulations can only be
performed on high performance computing (HPC) platforms.
For example, near term massively parallel processors and
clusters of shared memory processors will have memories of
100's of GBytes and performance of a few TFLOPs. Compared
with high-end workstations (500 MFLOPs) and high-end PCs
(100 FLOPs), a 1 TFLOP HPC platform would outperform
these by factors of 2000 and 10000, respectively.

The computer code PARMILA is the most widely used
code in the United States for the design of proton and ion
linacs. We have developed a parallel version of PARMILA
that runs on the massively parallel CM5 at the Advanced
Computing Laboratory of Los Alamos National Laboratory.
This version of the code is written in CM Fortran. In addition
to moving the code to the CM5, we also replaced the 2D (r,�-)

space charge routine of the serial code with a new 3D (x,y,z)
routine. The code will be used to model the LANSCE linac
and linac designs for the Accelerator Production of Tritium
(APT) project. As an example of its performance, a 2 million
particle simulation of a 1.7 GeV superconducting linac for
APT requires 3 hours on the 512 node partition of the CM5.
Simulations of shorter linacs have been performed with up to
30 million particles.

Approaches to Parallelization

There are three main parallel programming paradigms:
(1) single-instruction-multiple-data (SIMD), (2) single-
program-multiple-data (SPMD), and (3) multiple-instruction-
multiple-data (MIMD). SIMD is the easiest to use but is the
least flexible; all the processors perform the same operations
synchronously on different data. The SPMD approach is
slightly more flexible; every processor runs the same program,
but the programs may execute differently depending on the
data. Finally, the MIMD approach is the most flexible and
powerful, but it requires the most effort by the programmer to
use it; here every processor can run a different program with
different data.

To parallelize PARMILA we adopted the data parallel
approach augmented by the use of utility libraries and
scientific software libraries. This has the advantage that much
of the resulting code looks like the original serial version; it
can be easily used and modified by a person with little parallel
programming experience. Also, if the serial version changes it
is easy to make corresponding changes in the parallel version.
The parallel version looks like a Fortran90 code, but in
addition all DO loops over large arrays have been replaced
with FORALL loops. Also, compiler directives appear after
array declarations to specify how data is to be distributed
across processors.

Steps in Parallelizing PARMILA

The serial version of PARMILA consists of approximately
5000 lines of Fortran 77 code. To port PARMILA to the CM5
we began by running the serial version on a workstation for a
problem with zero current. As the parallel code evolved, the
results were checked against the serial results. Eventually all
DO loops over large arrays, such as the particle array, were
replaced with FORALL loops. (FORALL loops are parallel
DO loops and recognized as such by the compiler.) This
involved rewriting large sections of the serial code between
DO/ENDO statements, frequently making use of temporary
arrays. For much of the code this task was tedious but

LINAC 96

234

straightforward. Slight complications such as testing for lost
particles inside of loops could be easily dealt with by using
masked FORALL statements. A more complicated situation
arose when tests inside loops effected the program flow.
Consider, for example,the serial code used to generate a 4D
waterbag distribution:

 do 100 i=1,nptcls <loop over particles>
50 <generate 4 random numbers x1,x2,x3,x4>
 if(x1**2+x2**2+x3**2+x4**2.gt.1)goto 50
 <generate coords/momenta for this particle>
100 continue

This had to be replaced with code of the following form:

100 <generate four LARGE arrays x1,x2,x3,x4>
 <mask off if x1**2+x2**2+x3**2+x4**2.gt.1>
 <pack good data into final array>
 <if final array is not complete, goto 100>
 <generate coords/momenta for all particles>

This exemplifies a situation where utility routines (namely
PACK) that are not part of CMF or HPF are essential.

Besides rewriting large sections of code associated with
DO loops, some other simple tasks were required to port
PARMILA. As mentioned above, it is necessary to insert
compiler directives in subroutines to specify the layout of
parallel arrays. Another task was related to subroutine calls
and data reshaping. In CM Fortran, parallel arrays cannot be
reshaped through subroutine calls as they can in Fortran 90.
Thus, a 2D array coord(6,ntot) cannot be used as in call
mysub(coord(1)) and treated like a 1D array in subroutine
mysub. Also, a 1D array x(ntot) cannot be used as in
call mysub(x(ntot/2)) and treated as a 1D array of half the
original length in the subroutine. Again, these situations are
straightforward to deal with, but it can be tedious to find all
such occurrences and they can easily go unnoticed until the
program crashes or produces garbage.
 The major difficulty in porting serial codes to parallel
machines using CM Fortran or High Performance Fortran is
dealing with those operations that cannot be easily dealt with
in the data parallel paradigm. In the case of PARMILA, the
difficulty is associated with the space charge calculation. This
is discussed in the next section.

Space Charge Calculation

 PARMILA uses a Particle-In-Cell approach to computing
the beam space charge. Charge is deposited on a grid, the
fields are calculated on the grid, and the resulting fields are
interpolated back to the particles. The steps involving charge
deposition and field interpolation are not easily parallelizable.
Consider, for example, charge deposition on a two-
dimensional grid using area weighting. A serial routine would
look like the following:

 do 100 n=1,np
 i=(x(n)-xmin)/hx
 j=(y(n)-ymin)/hy
 ab=xmin-x+i*hx

 cd=ymin-y+j*hy
 rho(i,j)=rho(i,j) + ab*cd
 rho(i+1,j)=rho(i+1,j)+cd*(hx-ab)
 rho(i,j+1)=rho(i,j+1)+ab*(hy-cd)
 100 rho(i+1,j+1)=rho(i+1,j+1)+(hx-ab)*(hy-cd)

The equivalent parallel routine is the following:

 i=(x-xmin)/hx ! i,j,x,y,ab,cd = arrays
 j=(y-ymin)/hy ! hx,hy,xmin,ymin = scalars
 ab=xmin-x+i*hx
 cd=ymin-y+j*hy
 forall(n=1:np)rho(i(n),j(n))=
 # rho(i(n),j(n))+ab(n)*cd(n)
 forall(n=1:np)rho(i(n)+1,j(n))=
 # rho(i(n)+1,j(n))+cd(n)*(hx-ab(n))
 forall(n=1:np)rho(i(n),j(n)+1)=
 # rho(i(n),j(n)+1)+ab(n)*(hy-cd(n))
 forall(n=1:np)rho(i(n)+1,j(n)+1)=
 #rho(i(n)+1,j(n)+1)+(hx-ab(n))*(hy-cd(n))

The above parallel routine has poor performance. First,
the FORALL statements cause significant interprocessor
commu-nication. Second, if the density array rho is uniformly
spread across processors, then the routine will not be load
balanced. For example, if one deposited a Gaussian charge
distribution on the grid, then processors associated with the tail
of the distribution would finish accumulating charge sooner
than processors associated with the core. Performance can be
improved in several ways:

x� One can use SEND routines. These are optimized utility
routines that send data to processors based on index arrays
and perform binary operations on the data (e.g. add,
overwrite, min, max).

x� One can use SCAN routines (also called Parallel Prefix
routines). These are optimized routines that perform
binary operations cumulatively on a sequence of array
elements. For example, a SCAN-ADD operation on an
array (1,2,3,4,5) would result in (1,3,6,10,15).

�

x� One can use MIMD-style routines written with message
passing libraries. In this approach the programmer
explicitly writes the code that includes logic to determine
how to partition the data so that the load is balanced.

The approach based on SEND routines is easy to use but
the performance improvement is modest. The approach based
on SCAN routines is more difficult to implement, but the
performance improvement is much better. This approach,
using segmented-scan operations and data ordering, was
implemented by Ferrell and Bertschinger in an N-body code
for astrophysical simulations [1]. Finally, the MIMD-style
approach is the most difficult to implement but yields the best
performance improvement. This approach has been used as
part of the Numerical Tokamak Project, a DOE-funded High
Performance Computing and Communications project [2] [3].

Currently, the parallel version of PARMILA uses the
method of Ferrell and Bertschinger for charge deposition and
field interpolation. The field equations are solved using an

LINAC 96

235

FFT-based technique to convolve the charge density on the
grid with a Green function defined on the grid. Using standard
techniques it is possible to treat a bunch of charge assuming
open boundary conditions [4]. We have also implemented a
procedure that uses open boundary conditions transversely and
periodic boundary conditions longitudinally.

Performance

We have used the parallel version of PARMILA to perform
linac simulations with 1-30 million particles. For example, a 2
million particle simulation of a 1.7 GeV superconducting linac
for the APT project required 3 hours on the 512 node partition
of the CM5. The job used only 2 GBytes,
well below the 14.3 GByte maximum for the partition, so
much larger jobs are possible.
 The success of the parallel approach depends on
scalability, i.e., the ability to run larger problems in the same
amount of time using more processors, or the ability to run
problems of
a fixed size in less time using more processors. (Note however
that increasing the number of processors while keeping the
problem size fixed cannot cause the execution time to decrease
indefinitely: If the problem size is too small, the processors
will do too little calculation, and the execution time will be
dominated by communication.) The parallel version of
PARMILA has excellent scalability as shown in Table 1:

Table 1: Scaling Results (3.75M particles, 64x64x64 grid)

Procs CPU (min) MEM (GB)
128 15.5 1.8
256 8.1 2.0
512 4.3 2.5

Conclusions/Future Work

We have developed a parallel version of PARMILA that
runs on the CM5 at the Los Alamos Advanced Computing
Laboratory. This version of the code is written in CM Fortran.
In addition to moving the code to the CM5, we also replaced
the 2D (r,� -) space charge routine of the serial code with a
new 3D (x,y,z) routine. Using the present version of the
parallel code, simulations with 1-30 million particles are
possible depending on the length of the linac being modeled.
We plan to move the code to the new Cray T3E at the National
Energy Research Scientific Computing Center. We expect a
significant improvement in performance through the use of
charge deposition and field interpolation routines that use
message passing.

Acknowledgements

The author thanks Lawrence Rybarcyk, Frank Merrill,
Robert Garnett, and Kenneth Crandall for helpful discussions
about the PARMILA code. This research was supported by the
U.S. Department of Energy, Office of Energy Research,
through the Division of Mathematical, Information, and
Computational Sciences, the Division of High Energy and
Nuclear Physics, and by the Office of Defense Programs,
Accelerator Production of Tritium program. This research was
performed in part using the resources located at the Advanced
Computing Laboratory of Los Alamos National Laboratory,
Los Alamos, NM 87545.

References

[1] R. Ferrell and E. Bertschinger, Int. J. Mod. Phys. C, 5,
(1994), 933-956.
[2] V. K. Decyk, Computer Physics Communications, 87,
(1995), 87-94.
[3] J. Wang, P. Liewer, and V. Decyk, Computer Physics
Communications, 87, (1995), 35-53.
[4] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles, (Adam Hilger, New York, 1988).

LINAC 96

236

