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Abstract

The RF system for the SNS superconducting linac
consists of a superconducting cavity, a klystron, and a
low-level RF (LLRF) control system. For a proton linac
like SNS, the field in each individual cavity needs to be
controlled to meet the overall system requirements. The
purpose of the LLRF control system is to maintain the RF
cavity field to a desired magnitude and phase by
controlling the klystron driver signal. The Lorentz force
detuning causes the shift of the resonant frequency during
the normal operation in the order of a few hundreds hertz.
In order to compensate the Lorentz force detuning effects,
the cavity is pre-tuned into the middle of the expected
frequency shift caused by the Lorentz force detuning.
Meanwhile, to reduce the overshoot in the transient
response, a feed-forward algorithm, a linear parameter
varying gain scheduling (LPV-GS) controller, is proposed
to get away a repetitive noised caused by the pulsed
operation as well as the Lorentz force detuning effects.

1  INTRODUCTION

To analyse the performance of the RF control system
for the SNS superconducting linac, a MATLAB model is
created for each functional blocks, which includes the
superconducting cavity model, klystron model, PID
feedback controller, and a feed-forward controller[1].  An
equivalent resonant circuit couple with a coupling
transformer is used for the superconduncting cavity model
in which the Lorentz force detuning of the cavity
resonance frequency is included. The klystron is modelled
as a cascade of a pass filter, determined by the bandwidth
of the klystron, and a phase-magnitude saturation curve,
which represents the saturation characteristics of the
klystron. The phase-magnitude saturation curve is
obtained from the measurement and is further analysed
using the curve fitting to generate the final model. The
main feedback controller is a PI controller for an easy
implementation and robustness concern. In order to
implement the RF control system in a full digital control
system, the latency analysis is needed to satisfy the
performance requirement of the system. Finally, with the
results obtained from the numerical simulation and the
performance requirements, a full digital control system for
the LLRF system is proposed. In this system, a combined
CPLD and DSP technology is used to cope with different
requirements. The CPLD is applied to the critical path in

which the time delay needs to be minimized. While the
DSP is used to perform the complex linear parameter
varying gain scheduling (LPV-GS) control which requires
the computation power but needs only be fed to the control
signal in the next pulse.

2  SYSTEM MODELLING AND CONTROL
ALGORITHMS

2.1 Superconducting Cavity Model

 The state space equation of the superconducting model
is given by

     IIBBuxLAx ++∆= )( ω&                   (1)
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the dynamics of the Lorentz force detuning satisfies the
following equation
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where, mω∆  is the synchronous phase detuning

frequency, Lω∆ is the Lorentz force detuning frequency,

Lτ is the loaded cavity damping constant, K is the

Lorentz force detuning constant, 
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cavity field in I/Q components, whereas, the system
matrices B, BI, and C are given in [1].

In the model, the Lorentz force detuning frequency
appears on in the system matrix A and all other system
matrices are constant. In observing Equation (2), the
Lorentz force detuning is a nonlinear function of the
cavity field, which renders the system equation (1) a
nonlinear equation of the cavity field.
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2.2 Linear Parameter Varying Gain Scheduling
Controller (LPV GS)

 The principles of the linear parameter varying gain
scheduling can be explained as the followings. First, due
to the nonlinearity of the system equation, which comes
from both the saturation characteristic of the klystron and
the nature of the Lorentz force detuning effect, the
maximum performance of the RF control system can only
be achieved by implementing a variable gain-profile based
on the equilibrium point at which the system operates.
Secondly, at the equilibrium point, the system needs to be
linearized for solving the system equation (1). Finally,
both the feedback controller and the feed-forward
controller need to be implemented to suppress the
repetitive noise due to the pulsed operation and a known
effect of the Lorentz force detuning effect.

The equilibrium manifold of a linear parameter varying
system is given by

wEuBxAx )()()( ρρρ ++=&  (3)
xCy )(ρ= .

The above equations are a linearized version of the
system equation (1) at a specific operation point given by
ρ . Let ry  be the desired trajectory to be followed by the
system output y . Then, the parameterised equilibrium
manifold of the system is defined by the solution of the
algebraic equation given
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Now we consider the open loop system as given in  (1)
and the Lorentz force detuning as given in  (2).   First, let

            [ ]TQI vvV =

be the desired output trajectory to be tracked by the cavity
field I and Q.   Then, the equilibrium manifold ),( ee ux
of the open loop system as given in  (1) is the solution of
the following algebraic matrix equation.
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Solving Equation (5), we obtain

        Vxe =                                        (6)
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  (7)
Note that the equilibrium manifold ),( ee ux  is

parameterized by not only the desired trajectory V , the
Lorentz force detuning Lω∆  but also the beam current I.

From (2), the Lorentz force detuning on the equilibrium
manifold is

   2
222
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Using the equilibrium points obtained from (6) and (7),
we can design a linear parameter varying gain-scheduling
controller as

   ))(,,( exxVILFeuu −∆+= ω                      (9)

In the controller (9), ),,( VIF Lω∆  is the parameter
varying feedback gain matrix such that the closed loop
system matrix

   ),,()()( VILBFLALcl
A ωωω ∆+∆=∆             (10)

is stable.

There are many design techniques for ),,( VILF ω∆ .
A ∞H  controller-based parametric varying controller and
a velocity-based gain-scheduling controller are two of
them.  In addition, we can design a constant feedback gain
matrix F  such that for all variations of Lω∆ , V , and I
within given bounded sets, the closed loop system matrix
(10) is stable.  An eigenstructure control design technique
can be applied.   Let the constant stable matrix rA  be the
desired closed loop system matrix. Then, the feedback
controller gain matrix ),,( VILF ω∆  is determined by
solving

),,()()( VILBFLALr
A ωωω ∆+∆=∆             (10)

The solution of Equation (11) is
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Assume that the desired closed loop system matrix is a
diagonal matrix given by







=
20

01

ra
ra

rA .     

Then,

  





+
=∆

2221

1211
2
2

2
1

1

2
),,(

FF

FF

cc

oZ
VILF ω

           (13)
where,
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The controller as given in (9) together with  (6), (7), and
(12) is a parametrically dependent controller where the
Lorentz force detuning Lω∆ , beam current I , and the
desired trajectory V  are parameters defining the
controller [1].

3 SIMULATION RESULTS AND
CONCLUSIONS

 Figure 1 is the block diagram of the RF control system. As
we can see that the fast signal path is the implemented
using the CPLD while the error feed-forward is
implemented using the DSP. The total frequency response
of the system is given is Figure 2 illustrates the effect of
the Lorentz force detuning on the pole locations.
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1. The block diagram of the RF control system.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2. Root loci of the characteristic equation
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3. Field amplitude response for a closed-loop
system with a LPV-GS controller.
 
 The system performance is given in Figure 3 in which the
steady state value is within the error limit. In Figure 4, the
performance of the feed-forward control is represented in
a way so that the reduction of the repetitive noise due to
the beam pulse can be observed.
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4. Pulse to pulse responses of the cavity field with a
LPV-GS controller.
 
 

 From the analysis and the simulation results obtained
from our modelling, it is obviously that the performance
requirements have been achieved with a full digital control
system in which the latency of the digital system has been
take into account in the modelling. However, in the real
operation, other problems may arise, such as the effect of
the microphonics. The performance of the proposed RF
control system in the real operation will be reported when
the data is available.
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