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Abstract

In this report the general properties of neighbor modes in
compensated accelerating structures in the vicinity of oper-
ating point are considered. The dispersion equation for ar-
bitrary compensated periodical structure in the vicinity of
operating point is derived. To obtain it, the field distribu-
tions and frequencies for operating mode and coupling one
are necessary. The dispersion curve behavior and neighbor
modes field distributions are investigated both for closed
stop-band and for open one. The expressions for quality
factors, sensitivity and so on are also obtained for both
cases. Non-direct methods for the stop-band width eval-
uation are considered. The validity of conclusions was es-
timated in experiments and proved with direct numerical
simulations

1 INTRODUCTION

The compensated accelerating structures are now widely
used for acceleration of charged particles for high energies.
Let remember, that a ’compensated’ is named a structure in
which at operating frequency coincide frequencies of two
modes (0 or � type) with different parity of a field distri-
bution with respect to symmetry plane (accelerating and
coupling modes) [1]. Examples of compensated are such
structures as side-coupled, annular-coupled, on-axis cou-
pled, disk and washer, drift tube structure with posts and so
on. These structures combine a high efficiency with a high
stability of the field distribution to deviations in cells pa-
rameters and beam loading. In spite of these structures are
different in a design, they have the common properties. The
main properties of compensated structures are described in
[1]. This report gives results of an additional investigation
.

2 DISPERSION EQUATION

The general method of the field description in periodic
structure is proposed in [2] and an eigenvalue equation (see
[2]) can be considered as a dispersion one. Restricting con-
sideration by four modes - two 0 modes with eigenvalues
k01; k02 and two � modes, accelerating mode with ka; ~Ea

and coupling one with kc; ~Ec, one get equation:

det

0
BB@

k201 � k2 0 1�a 0
0 k202 � k2 2�a 0

1�a 2�a k2a � k2 ac
0 0 ac k2c � k2

1
CCA = 0

where 1a ; 2a ; ac are coupling coefficients ( see [2]). Re-
member Ea and Ec are normalized field distributions. This

equation is still enough particular, because it approximates
a total dispersion curve, taking in to account particularity
of the structure (0 modes). More restricted for a partic-
ular structure, but more general for a compensated struc-
tures family is a case when consideration is restricted by
two confining modes and describes a curve behavior in a
vicinity of an operating point. This case we obtain equa-
tion with 0 or � modes:

(k2a � k2)(k2c � k2)� [(1� cos �)ac]
2 = 0; (1)

ac =

Z
S2

~�[ ~Ea;
1

�0
rot ~Ec]dS:

Here � is a phase shift per structure period. Let rewrite
this equation in terms of frequencies, assuming fa and fc,
effective coupling coefficient e � kckaac; fa � fc and
a phase shift deviation � = � for 0-mode structures and
� = � � � for �-mode ones.

(f2a � f2)(f2c � f2) + f2af
2
c 

2
e �

2 = 0: (2)

In such definition the equation (2) is the same both for 0
and for � operating mode structure. And conclusions are
valid also both for 0- and �- type operating modes. Further
let assume operating � - mode.

3 DISPERSION CURVE BEHAVIOR

The dispersion curve behavior of a compensated structure
in the operating point vicinity strongly depends on a stop-
band width Æf = fc � fa and a group velocity �g. In
general case

�g =
2�d

c

@f

@�
=

dPT
cWT

; (3)

where Pt is a traveling wave power flux (proportional to
the boundary coupling integral in (2), W t - is a traveling
wave stored energy, d is the structure period length. If the
�-mode structure has a mirror symmetry planes, the ex-
pression for �g can be modified [3]:

�g = j��
R
V2
(�0HaHc � �0EaEc)dVp

2WaWc

j (4)

(For 0-mode structure expression (4) is not valid.) Here V 2

is a volume of on half of the structure period. This expres-
sion has been obtained in [3] basing on another approach
and there was a good guide in the development of a new
structure with high coupling coefficient [4].
The closed stop-band. For the case Æf = 0; fa = fc one
can find directly from (2) for the upper f u(�) and the bot-
tom f b(�) branches of the dispersion curve (see Fig. 1):

@(2n�1)fu

@�(2n�1)
= �@(2n�1)f b

@�(2n�1)
;
@(2n)fu

@�(2n)
= �@(2n)f b

@�(2n)
: (5)
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Figure 1. A dispersion curve behavior in the vicinity of
operating (�) mode. Solid line - Æf = 0. Dashed line -

Æf = 0:02fa.

Let define for modes f um; f
b
m of the �m = m�

N
; �m = � �

�m type, where N is a number of periods in the section,

�Fm = (fum � fa)� (fa � f bm) = fum + f bm � 2fa: (6)

Let �Fm
0 corresponds to the Æf = 0 case:

�Fm
0 � @2fu;b

@�2
�2m =

Gm2fa
N2

; G =
�2

fa

@2fu;b

@�2
: (7)

and the upper and the bottom branches of the curve can be
approximated as:

fu;b � fa � �gc�

2�d
+

Gfa�
2

2�2
(8)

The opened stop-band. For the case Æf = fc � fa (for
further consideration let suppose Æf � 0; fa � fc) there
are two regions at the dispersion curve, depending on �
value:

� =
��Æf

2�gfa
=

2Æf

efa
; �g = �

�e
4

; (9)

For � � � (a nearest to the operating point region) the
behavior of the upper and the bottom curve branches is ap-
proximated as:

f b � fa � fa�g�
2

���
; (10)

fu � fa + Æf +
fa�g�

2

���
:

The branches come to the operating mode with square low
in � and further will refer this region as square region.
For � � � (a more far from the operating point region)
the behavior of the upper and the bottom curve branches is
approximated as:

fu;b � fa � �gc�

2�d
+

Gfa�
2

2�2
+

Æf

2
; (11)

In this region the branches of the curve are shifted by Æf=2
value, but come parallel with respect to the branches for
an ideal case Æf = 0 (practically linearly, see (8)) and this
region will name further as a linear one. If the mode �m
belongs to the linear region, the parameter � (m)

g :

�(m)
g =

�N(fum � f bm)

2mfa
; (12)

doesn’t depend on m. Deviation of � (m)
g from a constant

value allows to determine the upper boundary of the linear
region.

4 FIELDS DISTRIBUTIONS

In the case of the closed stop-band Æf = 0 and for modes
from linear region with an open stop-band the field distri-
butions for modes in the operating point vicinity are so,
that:

lim
�!0

Ea

Ec

= 1: (13)

In a travelling (Eu;b
T ) or a standing (Eu;b

S ,in j-th section
period) wave regimes the field distributions are composed
from accelerating and coupling modes in equal parts,

Eb
T =

Ea � �Ecp
2

; Eb
S =

Ea cos j�m �Ec sin j�mp
2

; (14)

Eu
T =

Ea + �Ecp
2

; Eu
S =

Ea cos j�m +Ec sin j�mp
2

as one can find from (2).
For modes in the square region, similar to (14), one can
derive from (2):

Eb
c

Eb
a

=
�

�
=

Eu
a

Eu
c

; (15)

Eb
T =

Ea � � �
�
Ecq

(1 + �
�

2
)
; Eu

T =

�
�
Ea + �Ecq
(1 + �

�

2
)
;

Eb
S =

Ea cos j�m � �
�
Ec sin j�mq

(1 + �
�

2
)

;

Eu
S =

�
�
Ea cos j�m +Ec sin j�mq

(1 + �
�

2
)

:

For modes in the square region one component dominate
in the field distribution - the accelerating component at
the bottom branch and coupling component at the upper
branch, because we assume fc > fa.

5 ANOTHER PROPERTIES

Because the fields distributions for modes in linear region
are practically the same as for the ideal case of the closed
stop-band (14), below we will distinguish the parameters
for modes in the linear region and in the square one, as-
suming modes parameters in the linear region similar to
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the modes parameters for the case Æf = 0.
Quality factor. For �m modes in the linear region, basing
on (14), one can derive for quality factor Qm:

Qu
m � Qb

m � 2QaQ
c

Qa +Qc

(16)

The expression (16) can be used to estimate the coupling
mode quality factorQc. For the modes in the square region,
taking into account (15):

Qu
m =

(1 +
�2m
�2

)QaQc

Qa +
�2m
�2
Qc

; lim
�m!0

Qu
m = Qc; (17)

Qb
m =

(1 +
�2m
�2

)QaQc

�2m
�2
Qa +Qc

; lim
�m!0

Qb
m = Qa;

Frequencies sensitivity. Suppose x is an arbitrary geomet-
rical parameter of the structure. By using usual perturba-
tion theory and basing on (14), one can show the frequency

sensitivity coefficients @fu;bm

@x
for modes in the linear region

satisfy to:

@f bm
@x

� @fum
@x

� 1

2
(
@fa
@x

+
@fc
@x

): (18)

For the modes in the square region, taking into account
(15), one get::

@fum
@x

=

@fa
@x

+
�2m
�2

@fc
@x

1 +
�2m
�2

;
@f bm
@x

=

�2m
�2

@fa
@x

+ @fc
@x

1 +
�2m
�2

; (19)

For all modes, both in the linear region and in the square
one, next statement is valid:

@f bm
@x

+
@fum
@x

=
@fa
@x

+
@fc
@x

: (20)

Field perturbations. Suppose the j-th period of the struc-
ture has a perturbation �V , leading to the deviation of the
accelerating mode frequency �fa. By using the perturba-
tion theory for a multi-cell cavities [5]:

E = Ea +
X
m0

Em0

f2m0

R
�V

(�2HaHm0 �EaEm0)dV

W (f2a � f2m0)
;

(21)
one can find, referring with (11, 14) for the contribution
only of two modes �um; �

b
m from the linear region into the

perturbed field E:

E = Ea(1 +
4Æf�faN�2�2 cos j�m cos i�m

f2am
2�2g

) + (22)

+Ec

8��fa sin j�m cos i�m
m�gfa

:

These contributions are partially compensated and a resid-
ual (a slope in the perturbed field distribution) is propor-
tional to the Æf value. All time exists the coupling mode

contribution in the perturbed field.
For modes �um; �

b
m contributions in the square region, tak-

ing into account (11),(15), one get:

E = Ea +Ea

�faN
2��2 cos i�m cos i�m

fam2�g
: (23)

If there are modes in the square region, the struc-
ture loose the properties of the compensated one.
Stop-band width determination. In practice, the square
region at the dispersion curve exists only in untuned struc-
tures and should be removed in tuning by the stop-band
removing. To close the stop-band, one need to know f c
value. A direct fc measurement is not all time possible,
especially for structures with high e value. Let suppose
modes �m; �n belong to the linear region. From (11) it fol-
lows:

�Fm ��Fm
0 = �Fn ��Fn

0 = Æf: (24)

Taking into account n2�Fm
0 = m2�Fn

0 (see (7)), one get:

Æf =
m2�Fn � n2�Fm

m2 � n2
; G =

(�Fm ��Fn)N2

(m2 � n2)fa
:

(25)
The stop-band width Æf , defined with (25), has a sense ”in
average”, but it is the value which we need during tuning
the structure with high e value, when intermediate cells
tuning is avoided and a structure section tunes ”in average”.

6 SUMMARY

In very condensed form the general properties of the modes
in the operating point vicinity are considered. Results are
general for an arbitrary compensated structure and may be
used for different structures comparison and particularity
understanding. The useful application for results were dur-
ing the tuning of structures with high coupling coefficient,
such as the Disk and Washer structure and the Cut Disk [4]
one.
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