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Abstract
A self-consistent treatment of a 3-dimensional time-

dependent ellipsoid with negligible emittance is performed.
Envelope equations describing the evolution of an ellipsoid
boundary are obtained. For a complete model it is required
that the initial particle momenta be a linear function of the
coordinates. Numerical examples and verification of the
problem by a 3-dimensional particle-in-cell simulations are
given.

1  INTRODUCTION

A bunched beam in an accelerating field is often
approximated by a uniformly charged ellipsoid. However,
self-consistent solutions corresponding to such an ellipsoid
are valid only in special cases. Time - independent solutions
for an azimuthally-symmetric ellipsoid (spheroid) were
treated in Refs. [1], [2] and time -dependent solutions for
the same ellipsoid were found in Ref. [3]. It is well known
that there is no 3-dimensional self-consistent solution for a
time-dependent uniformly charged ellipsoid, similar to KV
distribution [4]. In this paper we consider the existence of a
solution for a 3D time-dependent ellipsoid with zero phase
space volume.

2   TIME-DEPENDENT ELLIPSOID IN
SELF-CONSISTENT FIELD

Consider the evolution of an initially uniformly
charged ellipsoid in the rest system of coordinates with
applied focusing potential

Uext(x, y, z, t) = Gx(t) x
2

2
 + Gy(t) y

2

2
  + Gz(t) z

2

2
 ,   (1)

where Gx(t), Gy(t), Gz(t) are time-dependent gradients of the
focusing field in 3 directions. External focusing fields are
linear functions of coordinates:

Ex
(ext) = - Gx(t) x,    Ey

(ext) = - Gy(t) y ,  Ez
(ext) = - Gz(t) z.   (2)

The potential of the uniformly charged ellipsoid in free
space is given by [5]
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ρRxRyRz
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ρ = 3
4π

 Qe

RxRyRz

  ,                                (4)

where Qe is the charge, Rx, Ry, Rz are semi-axes and ρ is
the space charge density of the ellipsoid. The components of
the electrostatic field of the ellipsoid are linear functions of
the coordinates:

Eξ
(b) = - ∂Ub

∂ξ
 = 

ρ Mξ

εo
 ξ ,                          (5)
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where ξ  = x, y, z.
Consider the dynamics of an arbitrary element inside

the ellipsoid with coordinates (x, x+ dx), (y, y + dy), (z, z +
dz) which contains dN (x, y, z) particles. Assume that the
ellipsoid remains uniformly populated, therefore the
equations of particle motion under the external field and
space charge forces of the ellipsoid are linear:

{ 

dx
dt

 = px

m
                                    

dpx

dt
 = - qGx(t)x + q ρ(t) Mx(t)

εo
 x   

,        (7)

similarly  for the y and z directions. The general solution
x(t), px(t) of the set of linear differential equations of the
first order, Eqs. (7), are linear combinations of the initial
conditions xo, pxo :

x(t)

px(t)
  =  

 a11(t)    a12(t) 

 a11(t)    a12(t) 
   

xo

pxo

 ,            (8)

where aij(t), i,j =1, 2 are coefficients of the solution matrix..
Similar solutions are valid for the y and z directions. Let us
introduce an additional requirement that the initial particle
momenta are linear functions of the coordinates:

pxo  = α x·xo ,      pyo  = α y·yo,      pzo = α z·zo .     (9)

In this case the solution, x(t), is a linear function of the
initial particle position:

x(t) = a11(t) xo + a12(t) α xxo  = cx(t)·xo ,         (10)

and similarly, y(t) = cy(t)·yo, z(t) = cz(t)·zo. At a fixed
moment of time, t, the volume of a selected element, dV(t)
= dx(t) dy(t) dz(t), is connected with the initial volume,
dVo = dxo dyo dzo, by the linear relationship dx(t) dy(t) dz(t)
= cx(t) cy(t) cz(t) dxo dy o dzo , or

dV(t) = c(t) dVo .                             (11)
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The number of particles inside the selected element is
conserved, dN = const, because no one particle can
penetrate the boundary of an element because of the linear
transformation of particle positions, Eq. (10). Therefore, the
particle density, ρ(t) = dN/dV(t), is connected with the
initial density, ρo = dN/dVo, by the linear equation
ρ(t) = ρo dVo/dV(t) , or

ρ(x,y,z,t) = ρ(xo,yo,zo,0)

c(t)
  .                       (12)

Eq. (12) indicates that the initially uniformly
populated ellipsoid, ρ(xo,yo,zo,0) = const, remains
uniformly populated while propagating in linear field. Space
charge density of the ellipsoid, ρ(x,y,z,t), depends only on
time according to Eq. (12) and is not a function of
coordinates x, y, z. Such an ellipsoid delivers linear space
charge forces according to Eqs. (5), (6). Therefore, the
original suggestion about particle motion in a linear field is
proved to be correct.

Due to the absence of momentum spread in the beam,
particles at the surface of the ellipsoid remain there during
the evolution of the ellipsoid, and envelope equations can be
written as equations for maximum extended particles with
coordinates x = Rx, y = Ry, z = Rz:

d2Rx

dt2
 + q Gx(t)

m
 Rx - 3

4π
 q
m

 Qe

εo
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Ry Rz

 = 0,    (13)
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 = 0 .   (15)

3  DRIFT OF ELLIPSOID IN FREE SPACE

The expansion of the ellipsoid in a drift space is
described by Eqs. (13) - (15) with Gx = Gy = Gz = 0. In
Figs. 1, 2 numerical results of the drift of an ellipsoid with
Qe = 3 nK with the initial semi-axes values Rx = 2 cm,

Ry = 1 cm, Rz = 4 cm and longitudinal velocity of βz = 0.01
are presented. Numerical calculations were performed using
the 3D particle-in-cell code BEAMPATH [6] utilizing 2·104

particles on the grid 1/2 Nx x Ny x Nz = 64 x 128 x 512.
The difference in analytical and numerical values of the
ellipsoid sizes are within  3% of each other.

4   APPLICATION TO PARTICLE
DYNAMICS IN A LINAC

The particle motion in an RF field with uniform
focusing is described by the Hamiltonian  [7]:

H = 
px

2  + py
2

2 m γ
  + pz

2

2 m γ3
 + q Uext + q Ub

γ2
 ,      (16)

Uext = E
kz

[Io(kzr
γ

)sin(ϕs-kzz) - sinϕs + kzzcosϕs] + Gr2

2
,   (17)
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Fig. 1. Envelopes of a uniformly populated ellipsoid in a
drift space: solid lines - PIC simulation, dotted lines -
analytical solution of Eqs. (13) - (15).
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Fig. 2. Uniformly populated ellipsoid in drift space: (a) t
= 0, (b) t = 1.2·10-7 sec.
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where px and py are transverse particle momenta,
pz = p - ps is the deviation from the longitudinal
momentum, z is the deviation from the position of a
synchronous particle, E is the amplitude of the accelerating
field, ϕs is the synchronous phase, kz = 2π/(βsλ ) is the wave
number, λ  is the wavelength, G is the constant gradient of
the focusing field, and r is the particle radius. The potential
of the external field, Uext, is a nonlinear function of the
coordinates z, r. In the vicinity of a synchronous particle,
ωz/vs <<1 , the following expansion is valid:

sin(ϕs - ω
vs

 z) ≈ sinϕs - (ω
vs

 z)cosϕs - 1
2

(ω
vs

 z)
2
sinϕs .  (18)

The approximation, Eq. (18), is valid for longitudinal
particle oscillations, much smaller than the separatrix size.
In addition, consider the radial deviation to be much smaller
than the bunch period r << βsλ  then we can assume

Io ( ωr
γvs

) ≈ 1 + 1
4

 ( ωr
γvs

)
2
 .                    (19)

Under these restrictions, the potential, Eq. (17), becomes:

Uext = Gz z
2

2
 + G r2

2
 [ 1 - Gz

2 γ2G
 sin(ϕs-kzz)

sinϕs

]
 ,       (20)

Gz = 
ω E sinϕs

vs
 .                           (21)

Potential, Eq. (20), depends on phase of particle in RF
field. For small accelerating gradient, Gz /(2 γ2G) <<1, the
potential, Eq. (20), is close to that of Eq. (1) and the
envelope equations (13) - (15) describe the evolution of a
small ellipsoidal bunch in a constant external field. Special
solutions Rx

''  = Ry
''  = Rz

'' = 0 give the conditions for a
stationary (time-independent) bunch, which is in
equilibrium with the external field:

Gξ = 3
4π

 Qe

εo
 
Mξ(Rx, Ry, Rz)

Rx Ry Rz

 ,     ξ = x, y, z .     (22)

In Fig. 3 the results of beam dynamics with Q = 1.4
nK in a channel with G = 3.6 kV/cm2, Gz= 0.58 kV/cm2, λ
= 8.57 m, β = 0.0178  are presented. The values of Rx = Ry

= 0.5 cm, Rz = 2 cm correspond to a stationary bunch. The
initial conditions for an ellipsoidal bunch were selected to
be Rx = 0.4 cm, Ry = 0.6 cm, Rz = 1.8 cm. Deviation from
the stationary solution results in oscillations around
equilibrium, while the ellipsoid remains uniformly
populated.
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Fig. 3. Envelopes of an ellipsoid in an accelerating-focusing
channel, τ  = tc/λ ; solid lines - PIC simulation, dotted lines -
analytical solution.
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