

Plasma Processing R&D for LCLS-II

Martina Martinello

On behalf of the FNAL, SLAC, ORNL plasma processing collaboration (supported by DOE BES)

IPAC 2017, Copenhagen

- Motivation
- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- SRF technology for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Motivation

- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- SRF technology for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Field Emission in SRF Cavities

Emission of electrons from **high electric field** region on the cavity surface

e⁻ strike the wall of the cell producing heat and x-rays

5/18/2017 Martina Martinello | IPAC 2017

Degradation in CM due to Field Emission

5/18/2017 Martina Martinello | IPAC 2017

- Motivation
- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- SRF technology for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Plasma Processing at ORNL/SNS

Plasma process at ORNL/SNS focused on:

- > Reducing FE by increasing work function of cavity RF surface
 - Hydrocarbon contaminants observed on all Nb cavities
 - Hydrocarbons and adsorbates lower work function of Nb
- Enabling operation at higher accelerating gradients

$$j = \beta \frac{AE^2}{\Phi} e^{-B \frac{\Phi^{3/2}}{\beta E}}$$
$$dj = 0 \quad \frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\Phi}{\Phi}$$

J: current density E: surface electric field Φ : work function β : enhancement factor (10s to 100s) A,B: constant

Increasing Φ by 10 % means increasing E_{acc} of about 15 %

M. Doleans et al. NIMA 812 (2016) 50-59

Reactive Oxygen Plasma to Remove Hydrocarbons

- Oxygen plasma at room temperature (reactive environment with ions, e-, neutrals, radicals, etc.)
- Volatile by-products are formed through oxidation of hydrocarbons and pumped out and monitored (RGA)
- Mixture of Neon-Oxygen: $p \sim 100 200 \text{ mTorr}$, 2 % O_2
 - $Ne \rightarrow \underline{\text{support gas}}$ to create very stable discharge
 - $O_2
 ightarrow \frac{\text{cleaning agent}}{\text{carbon forming volatile species}}$

$$O_2 + C_x H_y \rightarrow CO + CO_2 + H_2 O$$

M. Doleans et al. NIMA 812 (2016) 50-59

Eacc Increasing in SNS Cryomodule After Plasma Processing

SNS linac output beam energy is being increased

- One cryomodule has been processed offline
- Two cryomodules have been plasma processed directly in the SNS linac tunnel
- 20% Improvement of accelerating gradients on average so far

5/18/2017

- Motivation
- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- SRF technology for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Collaboration for LCLS-II Plasma Processing

Project supported by DOE - Basic Energy Sciences (BES)

Martina Martinello | IPAC 2017

•

۰

5/18/2017

🛠 Fermilab

2017	2018	2019	2020		
Present	Goals	Goals	Goals		
Applicability of SNS plasma processing	Plasma ignition in 9- cells cavity	Plasma processing in-situ in a	Plasma processing in-situ in LCLS-II cryomodules		
to LCLS-II cavities	Plasma processing	cryomodule-like			
Design of RF and vacuum system	and RF test of 9-cell cavities in VTS	environment (HTS) Monitor of plasma	Improve maximum E_{acc} of ~ 15-20 %		
Goals	Improve maximum	ignition based on resonance shift			
Plasma processing of 1.3 GHz single-	cavities				

cell cavity

2017	2018	2019	2020			
Present	Goals	Goals	Goals			
Applicability of SNS plasma processing	Plasma ignition in 9- cells cavity	Plasma processing in-situ in a	Plasma processing in-situ in LCLS-II			
to LCLS-II cavities	Plasma processing	cryomodule-like	cryomodules			
Design of RF and	and RF test of 9-cell	environment (HTS)	Improve maximum			
vacuum system	cavities in VTS	Monitor of plasma	<i>E_{acc}</i> of ~ 15-20 %			
Goals	Improve maximum	ignition based on resonance shift				
Plasma processing of 1.3 GHz single- cell cavity	cavities					

RF test in VTS

2017	2018	2019	2020			
Present	Goals	Goals	Goals			
Applicability of SNS plasma processing	Plasma ignition in 9- cells cavity	Plasma processing in-situ in a	Plasma processing in-situ in LCLS-II			
to LCLS-II	Plasma processing	cryomodule-like	cryomodules			
Design of RF and	and RF test of 9-cell	environment (HTS)	Improve maximum			
vacuum system	cavities in VTS	Monitor of plasma	<i>E_{acc}</i> of ~ 15-20 %			
Goals	Improve maximum	ignition based on resonance shift				
Plasma processing	<i>E_{acc}</i> of field emitting cavities					
cell cavity						
RF test in VTS						

2017	2018	2019	2020		
Present	Goals	Goals	Goals		
Applicability of SNS plasma processing	Plasma ignition in 9- cells cavity	Plasma processing in-situ in a	Plasma processing in-situ in LCLS-II cryomodules		
to LCLS-II cavities	Plasma processing	cryomodule-like			
Design of RF and vacuum system	and RF test of 9-cell cavities in VTS	environment (HTS) Monitor of plasma	Improve maximum E_{acc} of ~ 15-20 %		
Goals	Improve maximum	ignition based on resonance shift			
Plasma processing of 1.3 GHz single-	cavities				

cell cavity

- Motivation
- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- SRF technology for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

N-doping technology for LCLS-II

A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013) – Rapid Communications

Martina Martinello | IPAC 2017

5/18/2017

🛠 Fermilab

LCLS-II Prototype Cryomodule Result (FNAL)

Cavity	Cryomodule Max Gradient* [MV/m]	VTS Max Gradient [MV/m]	Usable Gradient** [MV/m]	FE onset [MV/m]	Cryomodule Q₀ @16MV/m*** Fast Cool Down	Q₀ @16MV/m at VTS
TB9AES021	21.2	23.0	18.2	14.6	2.6e10	3.1e10
TB9AES019	19.0	19.5	18.8	15.6	3.1e10	2.8e10
TB9AES026	19.8	21.5	19.8	19.8	3.6e10	2.6e10
TB9AES024	21.0	22.4	20.5	21.0	3.1e10	3.0e10
TB9AES028	14.9	28.4	14.2	13.9	2.6e10	2.6e10
TB9AES016	17.1	18.0	16.9	14.5	3.3e10	2.8e10
TB9AES022	20.0	21.2	19.4	12.7	3.3e10	2.8e10
TB9AES027	20.0	22.5	17.5	20.0	2.3e10	2.8e10
Average	19.1		18.2	16.5	3.0e10	2.8e10
Total Voltage	154.6 MV		148.1 MV			
			100			

Acceptance = 128 MV

* Administrative limit 20 MV/m

** Radiation <50 mR/h

*** TB9AES028 Q₀ was at 14 MV/m

Courtesy of G. Wu

LCLS-II Prototype Cryomodule Result (FNAL)

Cavity	Cryomodule Max Gradient* [MV/m]	VTS Max Gradient [MV/m]	Usable Gradient** [MV/m]	FE onset [MV/m]	Cryomodule Q₀ @16MV/m*** Fast Cool Down	Q₀ @16MV/m at VTS
TB9AES021	21.2	23.0	18.2	14.6	2.6e10	3.1e10
TB9AES019	19.0	19.5	18.8	15.6	3.1e10	2.8e10
TB9AES026	19.8	21.5	19.8	19.8	3.6e10	2.6e10
TB9AES024	21.0	22.4	20.5	21.0	3.1e10	3.0e10
TB9AES028	14.9	28.4	14.2	13.9	2.6e10	2.6e10
TB9AES016	17.1	18.0	16.9	14.5	3.3e10	2.8e10
TB9AES022	20.0	21.2	19.4	12.7	3.3e10	2.8e10
TB9AES027	20.0	22.5	17.5	20.0	2.3e10	2.8e10
Average	19.1		18.2	16.5	3.0e10	2.8e10
Total Voltage	154.6 MV		148.1 MV			
		•	1			

* Administrative limit 20 MV/m

** Radiation <50 mR/h

*** TB9AES028 Q₀ was at 14 MV/m

All cavities were FE free during vertical test, therefore some cavities slightly degraded after cryomodule assembly

Courtesy of G. Wu

🛠 Fermilab

Acceptance = 128 MV

Plasma Processing for LCLS-II Project Goals

Process cavities in-situ in cryomodules to:

- Increase maximum gradient
- <u>Reduce radiation level</u>
- <u>Preserve high-Q</u>

Reduce FE in cryomodule without needed to disassembly it

- Introduction
- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- SRF technology for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Plasma Ignition Simulation at 1.3 GHz

- **WARP simulation** of plasma ignition on a cubical box with dimensions 1/2 wavelength of 1.3 GHz oscillation
- Results suggest ignition field at 1.3 GHz is around 10 kV/m

Plasma Ignition in LCLS-II Cavities

- Plasma ignited sequentially cell-by-cell
- **Dual tone excitation** to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
 - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
 - <u>Off-resonance excitation</u> introduce asymmetry in the cell amplitude

LCLS-II 9-cells - 1st pass-band modes

Plasma Ignition in LCLS-II Cavities

- Plasma ignited sequentially cell-by-cell
- **Dual tone excitation** to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
 - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
 - <u>Off-resonance excitation</u> introduce asymmetry in the cell amplitude
- To obtain 10 kV/m, more power is needed comparing with SNS cavities:
- 9-cells instead of 6
- Larger mismatch at room T:
 - $Q_0 = 1 \cdot 10^4$ for Nb
 - SNS FPC: $Q_{ext} = 7 \cdot 10^5$
 - LCLS-II FPC: $Q_{ext} = 4 \cdot 10^6$
 - For LCLS-II only 1% of the power is transmitted to the cavity

Cell #	Mode 1	Amp	dF (MHz)	Mode 2	Amp	dF (MHz)	Pf FPC (W)
1	8/9 pi	0.67	0	pi	0.33	1.5	160
2	8/9 pi	0.75	-1.5	3/9 pi	0.25	0	200
3	5/9 pi	0.75	0	8/9 pi	0.25	-1.5	130
4	7/9 pi	0.58	1.5	4/9 pi	0.42	1.5	280
5	7/9 pi	0.75	0	5/9 pi	0.25	0	80
6	7/9 pi	0.5	-1.5	4/9 pi	0.5	-1.5	310
7	5/9 pi	0.75	0	8/9 pi	0.25	1.5	130
8	8/9 pi	0.71	1.5	3/9 pi	0.29	0	200
9	8/9 pi	0.67	-1.5	pi	0.33	-1.5	160

5/18/2017

🔁 Fermilah

New Idea: Plasma Ignition Using HOMs

Solution proposed to minimize power at the FPC:

→ Multi-tone excitation: mixing 2 modes from 1st pass-band + one HOM well coupled at room temperature

- For the **first pass-band** <u>only 1% of the power transmitted to the cavity</u>
- For some **high order modes (HOMs)** almost <u>all power gets to the cavity</u> (Power reflection is very low)

	CELL #		1	2	3	4	5	6	7	8	9
Г	MODE1	MODE#	8/9pi	8/9pi	5/9pi	8/9pi	7/9pi	8/9pi	5/9pi	8/9pi	8/9pi
First	WODET	AMP	0.47	0.53	0.6	0.27	0.5	0.27	0.6	0.53	0.47
pass-band	MODE2	MODE#	рі	3/9pi	8/9pi	4/9pi		4/9pi	8/9pi	3/9pi	рі
L		AMP	0.23	0.17	0.2	0.1		0.1	0.2	0.17	0.23
		MODE#	5 th	2 nd	2 nd	1 st	1 st	1 st	2 nd	2 nd	5 th
$(2^{nd} dinole hand)$		AMP	0.3	0.3	0.2	0.63	0.5	0.63	0.2	0.3	0.3
	Pf coupler		80 W	100 W	85 W	50 W	30 W	50 W	85 W	100 W	80 W
	Pf HC	M					<5 W				

🛟 Fermilab

5/18/2017

P. Berrutti, TTC Meeting 2017

New Idea: Plasma Ignition Using HOMs

Solution proposed to minimize power at the FPC:

→ Multi-tone excitation: mixing 2 modes from 1st pass-band + one HOM well coupled at room temperature

- For the **first pass-band** <u>only 1% of the power transmitted to the cavity</u>
- For some **high order modes (HOMs)** almost <u>all power gets to the cavity</u> (Power reflection is very low)

	CELL	#	1	2	3	4	5	6	7	8	9
ſ	MODE	MODE#	8/9pi	8/9pi	5/9pi	8/9pi	7/9pi	8/9pi	5/9pi	8/9pi	8/9pi
First	WODE	AMP	0.47	0.53	0.6	0.27	0.5	0.27	0.6	0.53	0.47
pass-band	MODE	MODE#	рі	3/9pi	8/9pi	4/9pi		4/9pi	8/9pi	3/9pi	рі
l	WODE	AMP	0.23	0.17	0.2	0.1		0.1	0.2	0.17	0.23
	MODE	MODE#	5 th	2 nd	2 nd	1 st	1 st	1 st	2 nd	2 nd	5 th
		AMP	0.3	0.3	0.2	0.63	0.5	0.63	0.2	0.3	0.3
	"Pf (Pf coupler Pf HOM		100 W	85 W	50 W	30 W	50 W	85 W	100 W	80 W
	Pf						<5 W				

P. Berrutti, TTC Meeting 2017

New Idea: Plasma Ignition Using HOMs

Solution proposed to minimize power at the FPC:

Multi-tone excitation: mixing 2 modes from 1st pass-band + one HOM well coupled at room temperature

- For the **first pass-band** <u>only 1% of the power transmitted to the cavity</u>
- For some high order modes (HOMs) almost <u>all power gets to the cavity</u> (Power reflection is very low)

5/18/2017

- Motivation
- SNS experience with plasma processing
- Joint collaboration: plasma processing for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Field Enhancement at the LCLS-II FPC

 Field enhancement at the coupler due to larger mismatch at room T and different FPC geometry

- Suggest larger probability to ignite the plasma at the coupler
- To be verified experimentally first in single-cell than in 9-cell cavity
 - The geometry of the antenna plays an important role in determining the plasma ignition level: the distance between the antenna tip and the outer conductor << cavity gap → different field level needed to ignite plasma

🛠 Fermilab

Neon Gas Ignition Simulation in FPC Coax WG

- Integrate ACE3P RF fields in FPC into WARP
- Determine minimum gas pressure for gas ionized for a specified field level

- The energy gained in the FPC narrow gap is small compared with that in the cavity
- The gas pressure to ignite plasma in FPC coax WG is 10 times larger than that in the cavity

Dual vs Multi-tone Excitation

• Dual-tone

CELL #		1	2	3	4	5	6	7	8	9
	MODE#	8/9pi	8/9pi	5/9pi	7/9pi	7/9pi	7/9pi	5/9pi	8/9pi	8/9pi
WODET	AMP	0.67	0.75	0.75	0.58	0.75	0.5	0.75	0.71	0.67
MODE2	MODE#	рі	3/9pi	8/9pi	4/9pi	5/9pi	4/9pi	8/9pi	3/9pi	pi
WODEZ	AMP	0.33	0.25	0.25	0.42	0.25	0.5	0.25	0.29	0.33
Tota F	l Pf at PC	160 W	200 W	130 W	280 W	80 W	310 W	130 W	200 W	160 W

• Multi-tone

CELL #		1	2	3	4	5	6	7	8	9
MODE1	MODE#	8/9pi	8/9pi	5/9pi	8/9pi	7/9pi	8/9pi	5/9pi	8/9pi	8/9pi
MODEI	AMP	0.47	0.53	0.6	0.27	0.5	0.27	0.6	0.53	0.47
MODE2	MODE#	pi	3/9pi	8/9pi	4/9pi		4/9pi	8/9pi	3/9pi	pi
WODE2	AMP	0.23	0.17	0.2	0.1		0.1	0.2	0.17	0.23
MODE2	MODE#	5 th	2 nd	2 nd	1 st	1 st	1 st	2 nd	2 nd	5 th
MODES	AMP	0.3	0.3	0.2	0.63	0.5	0.63	0.2	0.3	0.3
Pf cou	pler	80 W	100 W	85 W	50 W	30 W	50 W	85 W	100 W	80 W
Pf HC	M					<5 W				

5/18/2017

Dual vs Multi-tone Excitation

• Dual-tone

Martina Martinello | IPAC 2017

5/18/2017

🛟 Fermilab

- Motivation
- SNS experience with plasma processing
- SRF technology for LCLS-II
- Joint collaboration: plasma processing for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Set-up Plasma Processing for LCLS-II

- Hardware set-up for LCLS-II cryomodules will be similar to ORNL
 - Gas injection system (compliant with LCLS-II standards)
 - RF system (fundamental and higher-order-modes passbands)
 - Pumping system (compliant with LCLS-II standards)

RF System

- 3 signal generators, 1 RF combiner
- 2 Power Amplifier
 - High power for 1st pass-band modes (1.5 kW)
 - Broad-band for HOMs (0.8-2.5 GHz)
- 2 circulators, 2 loads
- 3 power meters, 6 power sensors

Gas Injection System

- Possibility of mixing up to 3 gases
- Mass Flow Controller (MFC) to set the desired flow and avoid turbulences
- Analysis of gas species throughout Residual Gas Analyzer (RGA)
- Possibility of pumping the cavity through the system itself

Pumping System

- "Particle Free Cart" in agreement with LCLS-II beamline pumping protocol
- Pumping down through a MFC to avoid turbulences and particle movement
- RGA to analyze the pumped out species
- Fully compatible with LCLS-II cryomodule

- Motivation
- SNS experience with plasma processing
- SRF technology for LCLS-II
- Joint collaboration: plasma processing for LCLS-II
- First investigation results
 - Simulations of plasma ignition in LCLS-II cavities
 - Possibility of plasma ignition at the FPC
- Design of the plasma processing system
- Conclusions

Conclusions

- ORNL demonstrated that plasma processing is a successful technique to reduce FE in-situ in cryomodules
- Possibility to increase maximum field also in LCLS-II cryomodules via plasma processing
- Simulations have demonstrated that dual tone excitation can work for LCLS-II cavities but more power is needed at the FPC
- Plasma ignition can be facilitated using HOM couplers \rightarrow reduced risk of FPC ignition
- RF and vacuum system designs complete
- First experiments of plasma processing on a single-cell cavity will be carried out in fall 2017

Thank you for your attention

Acknowledgments:

FNAL

- Anna Grasselino
- Martina Martinello
- Paolo Berrutti
- Timergali Khabiboulline
- Sebastian Aderhold

SLAC

- Marc Ross
- Giulia Lanza
- Dan Gonnella
- Andrew Burrill
- Liling Xiao
- Cho-Kuen Ng

ORNL

- Marc Doleans
- Kristin Tippey
- John Mammosser

Movable Coupler for VTS Test after Plasma Processing

- VTS test will be performed before and after plasma processing the cavity
- No exposure of the inner cavity surface to external environment between the processing and the test
- Movable power coupler:
 - Emulate LCLS-II FPC during plasma processing
 - Close to critical coupling during VTS

Gas Ignition by Accelerated Electrons in Warp

- Define neon gas by its density and subsequent ionization states
- Define background electrons with a specified density, accelerated by an external RF field impacting on gas
- Ionization governed by electron-neon impact cross section
- Not simulate reactive species of the plasma interacting with surface hydrocarbons and generate volatile by-products

Electron-neon impact ionization cross section (Almeida et al.)

Impact ionization in Warp $N = n_g \sigma v \Delta t$ where N = Number of events $n_g = Gas$ density $\sigma = Cross$ section v = Relative velocity $\Delta t = Time$ step

For simulation, choose constant σ = 25 Mb

Common Field Emitters

5/18/2017 Martina Martinello | IPAC 2017

N-doping from R&D to production

5/18/2017

🛠 Fermilab

- Many recipes were studied on single-cell cavities: light doping seemed the best in terms of both Q-factor and quench field
- Best recipe transferred to 9-cell cavities that were then assembled in the two prototype cryomodule (FNAL and JLAB)