

High Power Test Results of the ELI-NP S-Band Gun Fabricated With the New Clamping Technology Without Brazing

David Alesini (LNF-INFN, Frascati, Italy)

With the contribution of:

A. Battisti, M. Bellaveglia, A. Falone, A. Gallo, V. Lollo, D.T. Palmer, L. Pellegrino, L. Piersanti, S. Pioli, S. Tomassini, A. Variola, INFN-LNF, Frascati, Italy

L. Ficcadenti, V. Pettinacci, INFN Roma, Rome, Italy

F. Cardelli, L. Palumbo, University of Rome "La Sapienza", Rome, Italy

OUTLINE

- 1) ELI-NP Gamma Beam System and LINAC
- 2) Photo-Cathode RF guns
- 3) ELI-NP gun:
 - RF and thermo-mechanical design
 - Fabrication process with special RF-vacuum gaskets
 - Low power tests results
 - High power test results
- 4) Conclusions and perspectives

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

Electron

LABORATORY FRAME

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

[A. Giribono, MOVA016]

Electron

- ⇒ Advanced source of Gamma-ray photons in construction in Magurele (Bucharest, Romania) in the context of the ELI-NP Research Infrastructure by the "EuroGammaS" Association (composed by the INFN, the "Association leader", the University of Rome "La Sapienza", the CNRS, ACP S.A.S., Alsyom S.A.S., Comeb Srl, ScandiNova Systems AB);
- \Rightarrow The photons will be generated by **Compton back-scattering** in the collision between a high quality electron beam and a high power laser;
- \Rightarrow The machine is expected to achieve:
 - energy of the gamma photons tunable 0.2-19.5 MeV
 - narrow bandwidth (<0.5%)
 - high spectral density (>10⁴ photons/sec/eV)

The ELI-NP LINAC operates:

 \Rightarrow at 100 Hz

- \Rightarrow with **low emittance** (<0.5 mm mrad)
- \Rightarrow at relatively **high gradient** to be compact

 \Rightarrow in **multi bunch** (32 bunches)

The ELI-NP LINAC operates:

 \Rightarrow at 100 Hz

 \Rightarrow with **low emittance** (<0.5 mm mrad)

 \Rightarrow at relatively **high gradient** to be compact

 \Rightarrow in **multi bunch** (32 bunches)

This required the development of **special damped C band cavities** operating at 33 MV/m

The ELI-NP LINAC operates:

\Rightarrow at **100 Hz**

 \Rightarrow with **low emittance** (<0.5 mm mrad)

 \Rightarrow at relatively **high gradient** to be compact

⇒in **multi bunch** (32 bunches)

This required the development of **special damped C band cavities** operating at 33 MV/m

[D. Alesini et al., PR AB 20, 032004 (2017)]

This required the development of an high gradient/high rep. rate photo-gun operating at 120 MV/m cathode peak field

3D V. Pettinacci

The ELI-NP LINAC operates:

\Rightarrow at **100 Hz**

 \Rightarrow with **low emittance** (<0.5 mm mrad)

 \Rightarrow at relatively **high gradient** to be compact

 \Rightarrow in **multi bunch** (32 bunches)

This required the development of **special damped C band cavities** operating at 33 MV/m

[D. Alesini et al., PR AB 20, 032004 (2017)]

This required the development of an high gradient/high rep. rate photo-gun operating at 120 MV/m cathode peak field

3D V. Pettinacci

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- \Rightarrow They are used for **several applications** (FELs, THz sources, Compton sources...).
- \Rightarrow The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- \Rightarrow They are used for **several applications** (FELs, THz sources, Compton sources...).
- \Rightarrow The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- \Rightarrow They are used for **several applications** (FELs, THz sources, Compton sources...).
- \Rightarrow The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- \Rightarrow They are used for **several applications** (FELs, THz sources, Compton sources...).
- ⇒ The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

In the last generation of RF guns much effort has been spent to:

Increase the peak E field amplitude at the cathode Increase the rep. rate (av. diss. power) Reduce the realization cost

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- ⇒ They are used for **several applications** (FELs, THz sources, Compton sources...).
- ⇒ The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

In the last generation of RF guns much effort has been spent to:

Increase the

rep. rate (av.

diss. power)

RF and thermo-mechanical design

⇒ Rounded **couplers** to reduce pulsed heating

Increase the peak

E field amplitude

at the cathode

- ⇒ **irises** profiles with low peak surface electric field
- ⇒ Cooling system design integrated with RF design

Reduce the realization cost

power

DANFYSIK

solenoid

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- ⇒ They are used for several applications (FELs, THz sources, Compton sources...).
- ⇒ The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

In the last generation of RF guns much effort has been spent to:

power

DANFYSIK

solenoid

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- ⇒ They are used for several applications (FELs, THz sources, Compton sources...).
- ⇒ The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

In the last generation of RF guns much effort has been spent to:

RF AND THERMO-MECHANICAL DESIGN OF ELI-NP GUN

RF design ⇒iris profile with an elliptical shape and a large aperture to:

reduce the peak surface electric field;

•increase the **pumping speed** on the half-cell;

•increase the **frequency separation** between the two gun RF modes: in pulsed regime this allow using short (<1 μ s) RF pulses w/o affecting the BD.

⇒The coupling window strongly rounded to reduce the peak surface magnetic field and, as a consequence, the pulsed heating.

RF AND THERMO-MECHANICAL DESIGN OF ELI-NP GUN

34.8

34.43

34.06

33.7

33.33

32.97

32.6

32.23 31.87 31.5

RF design ⇒iris profile with an elliptical shape and a large aperture to:

reduce the peak surface electric field;

•increase the **pumping speed** on the half-cell;

•increase the **frequency separation** between the two gun RF modes: in pulsed regime this allow using short (<1 μ s) RF pulses w/o affecting the BD.

⇒The coupling window strongly rounded to reduce the peak surface magnetic field and, as a consequence, the pulsed heating.

8.8 µm

1.8 µm

2.8 um

3.7 µm

4.7 µm

5.6 µm

6.6 µm

8.5 µm

Radial deformation

⇒100 Hz and long RF pulses for MB ⇒ av. diss. power > 1kW
⇒6 cool. channels (incl. cathode) with total water flow of 30 liter/min
⇒full coupled thermal-structural analysis (Ansys Workbench)
⇒detuning of the gun under power <100 KHz (<2 deg temp.) w/o affecting the field flatness

Parameters	Value
f _{res}	2.856 [GHz]
Q ₀	14600
Cath. peak field	120 MV/m
$E_{cathode}/\sqrt{(P_{diss})}$	37.5 [MV/(mMW ^{0.5})]
E _{surf} /E _{cath}	0.9
Δ freq. 0 / π -mode	41.3
RF input power	14.5 MW (shaped)
RF pulse length	1.5 µs
Coupling β	3
H _{surf}	350 [kA/m]
Pulsed heating	<35 [°C]
Repetition rate	100 [Hz]
Av. Diss. power	1.2 [W]
Working temp.	30 [°C]
Δf under power	<100kHz
Fill. Time (τ)	400 ns

Parameters	Value
f _{res}	2.856 [GHz]
Q ₀	14600
Cath. peak field	120 MV/m
$E_{cathode} / \sqrt{(P_{diss})}$	37.5 [MV/(mMW ^{0.5})]
E _{surf} /E _{cath}	0.9
Δ freq. 0 / π -mode	41.3
RF input power	14.5 MW (shaped)
RF pulse length	1.5 µs
Coupling β	3
H _{surf}	350 [kA/m]
Pulsed heating	<35 [°C]
Repetition rate	100 [Hz]
Av. Diss. power	1.2 [W]
Working temp.	30 [°C]
Δf under power	<100kHz
Fill. Time (τ)	400 ns

Parameters	Value
f _{res}	2.856 [GHz]
Q ₀	14600
Cath. peak field	120 MV/m
$E_{cathode}/\sqrt{(P_{diss})}$	37.5 [MV/(mMW ^{0.5})]
E _{surf} /E _{cath}	0.9
Δ freq. 0 / π -mode	41.3
RF input power	14.5 MW (shaped)
RF pulse length	1.5 µs
Coupling β	3
H _{surf}	350 [kA/m]
Pulsed heating	<35 [°C]
Repetition rate	100 [Hz]
Av. Diss. power	1.2 [W]
Working temp.	30 [°C]
Δf under power	<100kHz
Fill. Time (τ)	400 ns

Parameters	Value
f _{res}	2.856 [GHz]
Q ₀	14600
Cath. peak field	120 MV/m
$E_{cathode}/\sqrt{(P_{diss})}$	37.5 [MV/(mMW ^{0.5})]
E _{surf} /E _{cath}	0.9
Δ freq. 0 / π -mode	41.3
RF input power	14.5 MW (shaped)
RF pulse length	1.5 µs
Coupling β	3
H _{surf}	350 [kA/m]
Pulsed heating	<35 [°C]
Repetition rate	100 [Hz]
Av. Diss. power	1.2 [W]
Working temp.	30 [°C]
Δf under power	<100kHz
Fill. Time (τ)	400 ns

power

DANFYSIK

solenoid

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- ⇒ They are used for several applications (FELs, THz sources, Compton sources...).
- ⇒ The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

In the last generation of RF guns much effort has been spent to:

power

DANFYSIK

solenoid

- \Rightarrow Photocathode RF guns are **multi-cell SW structures**.
- ⇒ The **electron beam is generated by photo-emission** using a drivelaser pulse to illuminate the cathode.
- \Rightarrow They are used for **several applications** (FELs, THz sources, Compton sources...).
- \Rightarrow The maximum achievable beam **brightness** is directly proportional to the **peak field** at the cathode (50-120 MV/m).

In the last generation of RF guns much effort has been spent to:

The gun has been fabricated w/o brazing using Copper parts a novel process recently developed at LNF- to be joined INFN involving the use of **special RF-vacuum gaskets** (same Cu material of gun) that guarantee (simultaneously) the vacuum seal and a perfect RF contact when the structure is clamped.

Force to be applied The gun has been fabricated w/o brazing using Copper parts [Int'l patent application PCT/IB2016/051464] a novel process recently developed at LNF- to be joined INFN involving the use of special RF-vacuum **RF-vacuum** gaskets (same Cu material of gun) that contact Vacuum 111 guarantee (simultaneously) the vacuum seal side Air side and a perfect RF contact when the structure is clamped. Flat surfaces Tail for gasket

alignment

[D. Alesini, et al., PRST- AB 18, 092001 (2015)]

All parts fabricated with a precision of $\pm 10 \ \mu m$ and surface roughness <150 nm. Rounded coupling hole machined with a 5 axis milling machine (@ COMEB company partner of Eurogammas).

All parts fabricated with a precision of $\pm 10 \ \mu m$ and surface roughness <150 nm. Rounded coupling hole machined with a 5 axis milling machine (@ COMEB company partner of Eurogammas).

All parts **cleaned** with a detergent, followed by a ultra-sound bath of organic acid (citric) in distilled water. Dried with N_2 flux and, finally, in vacuum.

All parts fabricated with a precision of $\pm 10 \ \mu m$ and surface roughness <150 nm. Rounded coupling hole machined with a 5 axis milling machine (@ COMEB company partner of Eurogammas).

All parts **cleaned** with a detergent, followed by a ultra-sound bath of organic acid (citric) in distilled water. Dried with N_2 flux and, finally, in vacuum.

Final assembly in **clean room**. The gun has been vacuum **leak tested**, then **measured at RF and tuned** (acting on deformation tuners) at low power. Finally, assembled with **cooling system and support**.

All parts fabricated with a precision of $\pm 10 \ \mu m$ and surface roughness <150 nm. Rounded coupling hole machined with a 5 axis milling machine (@ COMEB company partner of Eurogammas).

All parts **cleaned** with a detergent, followed by a ultra-sound bath of organic acid (citric) in distilled water. Dried with N_2 flux and, finally, in vacuum.

Final assembly in **clean room**. The gun has been vacuum **leak tested**, then **measured at RF and tuned** (acting on deformation tuners) at low power. Finally, assembled with **cooling system and support**.

RESULTS OF THE LOW POWER RF MEASUREMENTS

RESULTS OF THE LOW POWER RF MEASUREMENTS

RESULTS OF THE LOW POWER RF MEASUREMENTS

HIGH POWER RF TEST: SETUP

High power RF tests have been performed at the Bonn University under the Research Instruments responsibility. The power source was the ELI-NP Scandinova RF Unit based on Solid State modulator K2-3 and 60MW S-band Toshiba klystron.

HIGH POWER RF TEST: SETUP

High power RF tests have been performed at the Bonn University under the Research Instruments responsibility. The power source was the ELI-NP Scandinova RF Unit based on Solid State modulator K2-3 and 60MW S-band Toshiba klystron.

The klystron power, rep. rate and pulse length were progressively increased.

The trigger of the modulator was enabled by:

- (a) ion pumps current absorption exceeding a certain threshold;
- (b) distortions of the reflected signal due to breakdown phenomena.

The klystron power, rep. rate and pulse length were progressively increased.

The trigger of the modulator was enabled by:

- (a) ion pumps current absorption exceeding a certain threshold;
- (b) distortions of the reflected signal due to breakdown phenomena.

The klystron power, rep. rate and pulse length were progressively increased.

The trigger of the modulator was enabled by:

- (a) ion pumps current absorption exceeding a certain threshold;
- (b) distortions of the reflected signal due to breakdown phenomena.

The klystron power, rep. rate and pulse length were progressively increased. The trigger of the modulator was enabled by:

- (a) ion pumps current absorption exceeding a certain threshold;
- (b) distortions of the reflected signal due to breakdown phenomena.

The waveform at each pulse was compared with the previous one within a **mask** of tolerance and, in case of pulse distortions due to a discharge, the modulator was switched off immediately.[S. Pioli, TUPIK057]

HIGH POWER RF TEST: CONDITIONING RESULTS

The RF conditioning lasted about **160 hours** and the gun finally reached the nominal parameters with a break down rate of few 10⁻⁵ bpp. The **vacuum pressure** was measured by the ion pumps current during the whole process. It was of the order of 1x10⁻⁸ mbar at full power and always maintained a **decreasing trend**. At the end of conditioning and without power the vacuum pressure in the gun was lower than **5x10⁻¹⁰ mbar**.

CONCLUSIONS AND PERSPECTIVES

The use of special RF-vacuum gaskets technology:

- 1) allows avoiding brazing processes, reducing the cost, realization time and the risk of failure;
- 2) The technique has been successfully applied for the realization of the ELI-NP GUN and, previously, to the realization of a first gun now installed at UCLA Pegasus lab producing beams for electron microscopy and electron diffraction experiments;
- **3) without copper annealing** due to the brazing process, it is possible to reduce also the conditioning time (X band experience, CERN) and further investigations have to be done to see if it is also possible to reduce the BDR (X band experience, SLAC);
- 4) the extension of this new fabrication process to complex (long) LINAC structures is the next step on the application of this new technique for particle accelerators. A strong impact in the accelerator market is also expected because in principle all industries that are able to do precise and clean machining of components can produce accelerating structures.

CONCLUSIONS AND PERSPECTIVES

The use of special RF-vacuum gaskets technology:

- 1) allows avoiding brazing processes, reducing the cost, realization time and the risk of failure;
- 2) The technique has been successfully applied for the realization of the ELI-NP GUN and, previously, to the realization of a first gun now installed at UCLA Pegasus lab producing beams for electron microscopy and electron diffraction experiments;
- **3) without copper annealing** due to the brazing process, it is possible to reduce also the conditioning time (X band experience, CERN) and further investigations have to be done to see if it is also possible to reduce the BDR (X band experience, SLAC);
- 4) the extension of this new fabrication process to complex (long) LINAC structures is the next step on the application of this new technique for particle accelerators. A strong impact in the accelerator market is also expected because in principle all industries that are able to do precise and clean machining of components can produce accelerating structures.

UCLA Pegasus lab with clamped RF gun in operation (90 M/m 5 Hz)

[D. Alesini, et al., PRST- AB 18, 092001 (2015)
D. Cesar, et al., PRL 117, 024801 2016
J. Maxson, et al., PRL 118, 154802 (2017)
D Cesar et al., JAP 118, 234506 (2015)]

CONCLUSIONS AND PERSPECTIVES

The use of special RF-vacuum gaskets technology:

- 1) allows avoiding brazing processes, reducing the cost, realization time and the risk of failure;
- 2) The technique has been successfully applied for the realization of the ELI-NP GUN and, previously, to the realization of a first gun now installed at UCLA Pegasus lab producing beams for electron microscopy and electron diffraction experiments;
- **3) without copper annealing** due to the brazing process, it is possible to reduce also the conditioning time (X band experience, CERN) and further investigations have to be done to see if it is also possible to reduce the BDR (X band experience, SLAC);
- 4) the extension of this new fabrication process to complex (long) LINAC structures is the next step on the application of this new technique for particle accelerators. A strong impact in the accelerator market is also expected because in principle all industries that are able to do precise and clean machining of components can produce accelerating structures.

UCLA Pegasus lab with clamped RF gun in operation (90 M/m 5 Hz)

[D. Alesini, et al., PRST- AB 18, 092001 (2015)
D. Cesar, et al., PRL 117, 024801 2016
J. Maxson, et al., PRL 118, 154802 (2017)
D Cesar et al., JAP 118, 234506 (2015)]

THANK YOU FOR YOUR ATTENTION!

I would like also to thank A. Ghigo, L. Serafini, P. Chimenti and R. Di Raddo