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Abstract
Until recently, in the initial design phase of any accelerator

project, it was not possible to have an adequate description
of quadrupole and higher order multipole fringe fields. We
report on the latest developments in analytical fringe fields
for multipoles, particularly for quadrupoles and sextupoles.
We show how they can be used to improve accelerator
codes and make them both faster and more precise. We
also show how the analytical formulae for the fringe fields
yield expressions for both the scalar and vector potentials
in electromagnetism. We conclude by discussing the
application of both potentials to the design of multipole
magnets as well as the implementation of symplectic kick
approximations for fringe fields in thin lens models that
could be used in accelerator codes.

INTRODUCTION

It is very important to consider fringe fields of low order
multipoles in the early stages of the design of an accelerator.
In particular, it is useful to implement these into accelerator
codes as well. This means that, for example in time-
domain space charge tracking codes such as the General
Particle Tracer (GPT) code [1], computing time is not
wasted on discontinuities due to the hard edge models people
predominantly use to describe multipoles and everything is
smooth instead. This not only makes the codes considerably
faster, as illustrated in [2], but also helps with the accuracy of
the tracking by including an approximation of effects which
exist in real accelerators because all magnets have fringe
fields.

We present below a simplified version of the expressions
for fringe fields for multipoles found in [3] for the case of
quadrupoles and sextupoles, together with a brief summary
of the derivation. The expressions for the field in the
quadrupole case were already presented in [2, 3] and are
repeated here together with a brief explanation of their origin
as well as the scalar and vector potentials associated with
them. The expressions for the fringe fields presented are
a simplification because, unlike the more general results
presented in [3], it is no longer possible to control the be-
haviour of the fringe field as one goes off-axis transversally,
with respect to the longitudinal coordinate, at the exit of the
quadrupole or sextupole. However, this should not be an
issue unless a particular type of accelerator is being designed,
for example, EMMA [4,5], where one of the main aspects
of a non-scaling FFAG is that the particle trajectories go
considerably far away from the axis due to the nature of
these accelerators. But, even in this case, the effect should
be almost negligible.

FRINGE FIELDS FOR DIPOLES
To illustrate the solutions of Maxwell’s equations, we look

at dipoles first as the general case for any order multipole
can be considered a relatively simple generalisation of this.
For dipoles, it is sufficient to consider a two dimensional
version of the magneto-static equations ®∇ × ®B = ®∇ · ®B = 0,
taking Bx = 0, these simplify to:

∂yBy + ∂zBz = ∂yBz − ∂zBy = 0, (1)

and
∂xBz = ∂xBy = 0,

so there is no dependence on x. In this paper, we also
consider fringe fields, for both dipoles and higher order
multipoles, with an Enge-type fall-off [6], though others are
possible [7]

F(z) =
1

1 + exp [E(z)]
,

with E(z) given by

E(z) = a1 + a2

( z
D

)
+ a3

( z
D

)2
+ ... + a6

( z
D

)5
,

with all ai constants determined by models and/or exper-
iment. An advantage of the Enge-type decay is that the
fields can be made to decay almost arbitrarily rapidly. The
same cannot be said, for example, of an arctan type fall-off
[8]. Maxwell’s Equations (1), through cross differentiation,
imply:

∆y,zBy = ∆y,zBz = 0,

where ∆y,z = ∂2
y + ∂

2
z . Both equations can be easily solved

(for By and Bz) to give By = e(z + iy) + f (z − iy) and
Bz = g(z + iy) + h(z − iy). If we further ask that Equations
(1) be solved as well and we restrict ourselves to real fields,
we obtain:

By = e(z + iy) + ē(z − iy), (2)
Bz = −ie(z + iy) + iē(z − iy). (3)

Applying the equations derived above for dipoles with Enge-
type fall-offs, we have

By =
1

2(1 + eE(z+iy))
+

1
2(1 + eE(z−iy))

,

which would force Bz to have the form

Bz =
−i

2(1 + eE(z+iy))
+

i
2(1 + eE(z−iy))

,

for some complex function E(z + iy). If we consider the
simple case E(z + iy) = z + iy, so with just the a2 Enge
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coefficent non-zero and normalised to one, then expressions
simplify to:

By =
(1 + ez cos(y))

1 + 2ez cos(y) + e2z , Bz =
−ez sin(y)

1 + 2ez cos(y) + e2z .

This may be extended to include as many parameters of
the Enge function as desired, the only restriction being that
E = E(z + iy). Having said this, the above representation
has the additional benefit that, from a computational point
of view and provided the fringe field is positioned in such a
way that the z = 0 point is precisely where the edge of the
hard edge magnet used to be, the overall integrated length of
the magnet is the same as that of the original hard edge. This
is due to the chosen decay having a π rotational symmetry
about the z = 0 point.

EXTENSION TO HIGHER ORDER
MULTIPOLES

In order to extend the fringe fields to higher order
multipoles and to arrive at expressions which are similar
in nature to Equations (2,3), it is convenient to introduce
the complex coordinates u = 1√

2
(x + iy) and v = 1√

2
(x − iy)

and to define the transformation / rescaling of Maxwell’s
equations: Bu =

1√
2
(Bx + iBy), Bv =

1√
2
(Bx − iBy) and

Bζ = 1√
2

Bz , ζ = 1√
2

z, so we have:

∂uBu + ∂ζBζ = ∂zBu − ∂vBζ = 0,

together with their complex conjugates. From which one
can see immediately that, in the absence of any fringe fields,
the general solution of Maxwell’s equations for any magnet,
acting transversely only and without fringe (Bz = 0) is given
by Bu = f (v) and Bv = h(u) for some functions f and h.
The case of a multipole is given by Bu = ivn, Bv = −iun

and Bζ = 0, so a quadrupole is n = 1, Bu = iv, Bv = −iu
and Bζ = 0 and so on. In this way and through a relatively
simple extension of the solution for the dipole case, together
with an extensive use of the fact that the Maxwell equations
are linear, it is possible to add as many solutions as desired
together and to rescale them as well, as detailed in [3].

Therefore, the full solution for a multipole of order n with
Enge-type fall-off of the field can be written as:

Bu =

n+1∑
j=1

ibjcj
[
(ζ + ihj)

nF(n; ζ + ihj)

−(−1)n+1(ζ − ihj)
nF(n; ζ − ihj)

]
,

Bv =

n+1∑
j=1

i
cj
bj

[
(ζ + ihj)

nF(n; ζ + ihj)

−(−1)n+1(ζ − ihj)
nF(n; ζ − ihj)

]
,

Bζ =
n+1∑
j=1

cj
[
(ζ + ihj)

nF(n; ζ + ihj)

+ (−1)n+1(ζ − ihj)
nF(n; ζ − ihj)

]
,

where the constants bj and cj satisfy various relationships
[3], hj =

u
b j
+ bjv and we have chosen for all j:

Fj(ζ + ihj) = F(n; ζ + ihj),

G j(ζ − ihj) = (−1)n+1F(n; ζ − ihj).

The functions F(n; ξ) with complex argument ξ are con-
structed in a way that the multipole gradient has the usual
Enge-type fringe field fall-off, so

F(0; ξ) =
1

1 + eξ
.

and the functions F(n; ξ) for n > 0 are then obtained
inductively and through repeated integration [3] so that, for
any (positive integer) n and (real argument) ζ , F(n; ζ) can
be written in the form:

F(n; ζ) = 1 +
n!
ζn

Lin(−eζ ) −
n∑
j=1

n!
(n − j)!ζ j

Lij(−1),

where Lin(ζ) is the polylogarithm (or Jonquière function [9])
of order n. It is possible to let all constants bi → 1 for every
order of multipole, in what follows we show the results of
this in detail for quadrupoles and sextupoles.

FRINGE FIELDS FOR QUADRUPOLES
When we take limits of the coefficients b1 and b2 as

they both tend to 1 in the above expressions, we obtain the
following for the components of the field:

Bx =
1
8

(
2(4ei

√
2x + 2e

√
2(2z+ix) + 3e

√
2z(1 + e2i

√
2x))y

(ei
√

2x + e
√

2z)(1 + e
√

2(z+ix))

+i
√

2 ln

[
1 + e

√
2(z+iy)

1 + e
√

2(z−iy)

])
,

By = Bx(x ↔ y),

Bz =
1
8

{
−y

(
tan

[
x − iz
√

2

]
+ tan

[
x + iz
√

2

] )
−x

(
tan

[
y − iz
√

2

]
+ tan

[
y + iz
√

2

] )}
.

There are several ways this can be done. The easiest is to
use a program such as Mathematica [10] and simply take a
limit of these constants to the desired value. Alternatively
and because b1 and b2 depend on each other so there is
only really one variable, it is possible to use L’Hôpital’s rule
(because the original expressions exhibit singularities) to
obtain the same result. Note that several expressions for
the fringe field of a quadrupole can be found [2,3], all are
equivalent when the various exponentials are converted to
trigonometric functions and vice versa. As discussed in [3]
for the case of quadrupoles the fringe fields given above
have been constructed to have a symmetry under rotation
by π/2 about the z axis, just like the inside of the magnet.
However, in the interest of simplicity, this will not be done in
the case of sextupoles, which should have a π/3 symmetry,
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as this makes the expressions unwieldy. Moreover, it only
really has an effect when one goes very far away from the
central longitudinal axis, where even the beam in non-scaling
FFAGs does not go.

FRINGE FIELDS FOR SEXTUPOLES
For the case of sextupoles, things are different and, instead

of just having to take the limit of one constant, there are now
two. More precisely, there are three constants, b1, b2 and b3
but one depends on the other two. The traditional version
of L’Hôpital’s rule no longer applies, however, one can still
compute the limits in Mathematica with the result:

Bx =
1
2
y
(
2
√

2x + i ln
[
1 + e

√
2(z+ix)

]
−i ln

[
1 + e

√
2(z−ix)

] )
,

By =
1

2
√

2

(
2x2 − Li2

[
−e
√

2(z−ix)
]
− Li2

[
−e
√

2(z+ix)
]

−2y2 + Li2
[
−e
√

2(z−iy)
]
+ Li2

[
−e
√

2(z+iy)
] )
,

Bz =
1
4

{
2y

(
ln

[
1 + e

√
2(z+ix)

]
+ ln

[
1 + e

√
2(z−ix)

] )
+i
√

2
(
Li2

[
−e
√

2(z−iy)
]
− Li2

[
−e
√

2(z+iy)
] )}

,

and verify that all the required equations are satisfied. It
should be possible to recreate this via a multivariate version
of L’Hôpital’s rule [11, 12] as well.

SCALAR AND VECTOR POTENTIALS
There are many applications for which it is useful to

consider the scalar and vector potentials, φ and ®A with ®B =
®∇φ = ®∇ × ®A, for the fringe fields of the multipole magnets
considered. For example, for an iron dominated magnet,
the surfaces of constant scalar potential φ correspond to
the various possible pole faces of the magnet. This was
shown in [3] for the scalar potential of a quadrupole φq .
For the limiting case inwhich the coefficients b1 and b2
tend to 1, we give the scalar potential for a quadrupole and
a sextupole below. Simlarly, the vector potential is also
readily available from the expressions given in [3]. The
usual limiting procedure can also be taken in this case and the
results are given below for both quadrupoles and sextupoles.
The vector potential can be used for symplectic tracking
through fields as described in [13].

Quadrupole Case
The scalar potential for a quadrupole, φq , is given by:

φq =
1
8

(
8xy + i

√
2y ln

[
1 + e

√
2(z+ix)

1 + e
√

2(z−ix)

]
+i
√

2x ln

[
1 + e

√
2(z+iy)

1 + e
√

2(z−iy)

])
,

whereas the vector potential, ®Aq , is given by:

Aqx =
1
8

(
8xz +

√
2x

{
ln 16

− ln
[(

1 + e
√

2(z−iy)
) (

1 + e
√

2(z+iy)
)]}

+iLi2
[
−e
√

2(z−ix)
]
− iLi2

[
−e
√

2(z+ix)
] )
,

Aqy = −Aqx(x ↔ y),

Aqz = 0.

Sextupole Case
It is possible to give similar expressions for φs and ®As

in the case of a sextupole. We point out once again that
the equations given below do not possess the property that
the fringe has a complete π/3 rotational symmetry in the
fringe field region. However, they do lead to fields which
satisfy Maxwell’s equations and are easier to implement in
any computer code than their symmetrised counterpart.

φs =
1

12

{
−2
√

2y3 + 3
√

2y
(
2x2 − Li2

[
−e
√

2(z−ix)
]

−Li2
[
−e
√

2(z+ix)
] )
+ 3i

(
Li3

[
−e
√

2(z−iy)
]

−Li3
[
−e
√

2(z+iy)
] )}

,

Asx =
1
4

{(
x2 − y2

) (
2
√

2z + ln 4
)
− Li3

[
−e
√

2(z−ix)
]

−Li3
[
−e
√

2(z+ix)
]
+ Li3

[
−e
√

2(z−iy)
]

+Li3
[
−e
√

2(z+iy)
]}
,

Asy = −
1
4
y
{
4x

(√
2z + ln 2

)
+ i
√

2
(
Li2

[
−e
√

2(z−ix)
]

−Li2
[
−e
√

2(z+ix)
] )}

,

Asz = 0.

CONCLUSIONS
Analytical expressions for the fringe fields of quadrupoles

and sextupoles were given. These have already been applied
to the code GPT with significant advantages over previous
representations of the fringe region [2] and it is hoped
that they will be useful in other codes as well. When
applied to time-based computer codes they should facilitate
considerably the accuracy and computing speed with which
particles are tracked. Possible further work could include
determining exactly what kind of fringe field behaviour is
desired at the start of a project rather than after the magnets
have been delivered as well as the application of the vector
potential to the symplectic tracking of particles through
quadrupole and sextupole fringe fields.
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