
KAMELEON – A BEHAVIOR-RICH, NON-MEMORYLESS AND TIME-

AWARE GENERIC SIMULATOR

R. Fernandes
†
, European Spallation Source, Lund, Sweden

N. Senaud, Commissariat à l'Energie Atomique et aux Energies Alternatives, Gif-sur-Yvette, France

Abstract

At the European Spallation Source (ESS), thousands of
devices will be used to control both the machine and end-

station instruments. To enable ongoing development when
access to these devices is not possible (for whatever the
reason), a simulator named Kameleon was implemented.
The present paper describes this simulator, illustrates how
it works through a practical example, and finally presents
possible developments to further improve it.

INTRODUCTION

The ESS is currently in construction phase and it is ex-
pected to enter in operation in 2019. Consequently, the
development of controls is ramping up sharply despite
developers not having an easy access to devices most of
the time (thus putting an additional burden on people).
The reasons for this constrain are due to some of these
devices being under construction, while others being
purchased or not physically located at the ESS but at its
in-kind partners (e.g., the Commissariat à l'Energie
Atomique et aux Energies Alternatives – CEA). To over-
come this situation, a simple yet flexible and powerful
simulator was needed to secure a smooth development.
With these goals in mind, Kameleon [1] is being devel-
oped at the ESS in the recent years. It is a behavior-rich,
non-memoryless and time-aware generic simulator that
handles clients through a TCP/IP connection. An instance
of this client is an EPICS IOC or a Tango Device Server.

DESCRIPTION

Kameleon is a tool implemented in the Python pro-
gramming language so that its development effort is kept
at minimum but also to ease the development of simula-
tors (that are used by Kameleon) by people not necessari-
ly accustomated to software development (e.g., integra-
tors). These simulators – also known as .kam files – mod-
el devices by describing the commands and statuses that
they receive and send respectively. At the time of writing
several .kam files are already available that may be used
with Kameleon to simulate disparate devices such as
power supplies, electronic boards, oscilloscopes and tem-
perature controllers. Table 1 summarizes these.

The main features that originally characterize this tool

are the following: Ubiquitous: multiple platforms such as Windows,

Linux and Mac OS X are supported. Behavior-rich: predefined behaviors as well as user-

defined are available.

 Non-memoryless: the state of the simulator can be

preserved between events and/or elapsed time so

that, e.g., a finite-state machine can be implemented. Time-aware: a status can be sent to the client either
event-based – whenever a command is received – or
time-based – after a certain elapsed time. Flexible: commands and statuses are described in a
simple user-defined file – nothing is hard-coded in
Kameleon.

Table 1: Devices Currently Simulated by Kameleon

Device

AK-NORD XT-Pico-SXL (electronic board)
FUG HCH 15K-100K (power supply)

FUG HCP 35-3500 (power supply)
Geiger Counter (electronic board)
Hameg HMO3034 (oscilloscope)

Julabo F25-HL (refrigerated/heating circulator)
Lake Shore 336 (temperature controller)

TDK Lambda Genesys 10-500 (power supply)

Workflow

Kameleon is based on a classic client-server model [2]
where it essentially awaits for incoming clients (through a
TCP/IP connection) and serves their requests by receiving
commands and sending statuses. Fig. 1 depicts this model
as well as the simulation workflow in Kameleon.

Figure 1: Simulation Workflow in Kameleon.

.kam file

A .kam file is technically a Python module (or .py file)
that is defined by the person interested in having Kamele-
on simulating a certain device. Kameleon is able to read
this type of file and evaluate its content. This approach, of
evaluating the content, can be seen as an effective way to ___

† ricardo.fernandes@esss.se

THPAB136 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
4040Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

extend Kameleon’s capability to simulate the device de-
scribed by a .kam file.

Typically, a .kam file contains two Python lists named
COMMANDS and STATUSES (both recognized by
Kameleon) that model commands and statuses respective-
ly. Their generic forms – and detailed explanations – are:

COMMANDS = [[Description1, Command1, Status1,

Wait1], ..., [DescriptionX, CommandX, StatusX,

WaitX]]

 Description: string that describes the command (e.g.,
“set power on”). Command: string that represents the command (e.g.,
“AC1”). Only data (received from the client) that
matches exactly the command is selected. Additional
matching policies are available: If command starts with ***, any data that ends

with command is selected. If command ends with ***, any data that starts
with command is selected. If command starts and ends with ***, any data
that contains the command is selected. Status: integer or list that specifies the index(es) of

the status(es) (stored in the STATUSES list) to send
to the client after the command is selected. If 0 or not
specified, no status is sent. Wait: integer that specifies the time to wait (in milli-
seconds) before sending the status to the client. If 0 or
not specified, the status is immediately sent (i.e., right
after the command is received).

STATUSES = [[Description1, Behavior1, Value1,

Prefix1, Suffix1, Timeout1], ..., [DescriptionX,

BehaviorX, ValueX, PrefixX, SuffixX, TimeoutX]]

 Description: string that describes the status (e.g., “get
temperature value”). Behavior: integer that specifies the behavior for gen-
erating the status. It can either be: FIXED: sends a fixed value to the client. ENUM: sends a value – belonging to an enu-

meration – to the client. INCR: sends an incremented value to the client. RANDOM: sends a random value to the client. CUSTOM: sends a value from a user-custom

function to the client. Value: value to send to the client. Depending on the
behavior, it can either be an integer, float, string or
list: When FIXED, the value is expected to be an in-

teger, float or string. Independently of how
many times it is sent to the client, the value re-
mains the same (i.e., does not change). When ENUM, the value is expected to be a list.
It represents a set of elements (enumeration).
After sending an element of the list to the client,
the next value to be sent is the next element in

the list. When the last element is sent, the next
to be sent is the first element of the list. When INCR, the value is expected to be an in-
teger, float or list. If an integer or float, the first
value to be sent is a 0 and subsequent values to
be sent are incremented by value. If a list, the
lower bound, upper bound and increment values
are defined by the first, second and third ele-
ments of the list, respectively. When RANDOM, the value is expected to be an
integer or a list. If an integer, a random number
between 0 and value is generated. If a list, the
lower and upper bounds of the random number
to generate are defined by the first and second
elements of the list, respectively. The generated
random number is sent to the client. When CUSTOM, the value is expected to be a
string. It contains the name of a user-defined
Python function to be called by Kameleon. The
value returned by this function is sent to the cli-
ent. Prefix: string that contains the prefix to insert at the

beginning of the value to send to the client. If not
specified, nothing is inserted. Suffix: string that contains the suffix to insert at the
end of the value to send to the client. If not specified,
nothing is inserted. Timeout: integer that specifies the time-out (in milli-
seconds) after which the status is sent to the client
(i.e., time-based). If 0 or not specified, the status is
only sent after receiving a command from the client
(i.e., event-based).

Usage

Kameleon is primarily meant to be launched from a
terminal where it listens for incoming clients through a
TCP/IP connection on port 9999 – this can be configured
through a parameter though – to serve their requests.
When no .kam file is specified (upon launching it),
Kameleon simply displays the commands received from
the client and does not react to these (useful for connec-
tion testing purposes). By specifying a .kam file, Kamele-
on is able to simulate the device modelled by this file by
recognizing commands and eventually reacting to these
by sending statuses to the client.

To illustrate how Kameleon works, the following Py-
thon code (stored in a .kam file) defines some commands
and statuses, as well as a user-defined function:

COMMANDS = [["Set Power On", "AC1"],

 ["Set Power Off", "AC0"],

 ["Get Power", "AC?", 1],

 ["Get FIXED", "FIXED?", 2],

 ["Get ENUM", "ENUM?", 3],

 ["Get INCR", "INCR?", 4],

 ["Get RANDOM", "RANDOM?", 5],

 ["Get CUSTOM", "CUSTOM?", 6]]

STATUSES = [["Get Power", ENUM, [1, 0], "AC?"],

 ["Get FIXED", FIXED, 18.3],

 ["Get ENUM", ENUM, [10, 20, 30]],

Proceedings of IPAC2017, Copenhagen, Denmark THPAB136

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

ISBN 978-3-95450-182-3
4041 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

 ["Get INCR", INCR, 2],

 ["Get RANDOM", RANDOM, 50],

 ["Get CUSTOM", CUSTOM, "func()"]]

i = 0

def func():

 global i

 i = i + 1

 return math.sin(0.25 * i) * 100

Assuming that an IOC (a typical client) is running and
Kameleon is launched with the .kam file storing the pre-
vious Python code, Kameleon accepts a connection from
the IOC, and starts receiving commands and sending
statuses from/to it. Fig. 2 and Fig. 3 depict Kameleon
serving the IOC and an OPI displaying PVs (belonging to
the IOC) that are fed by Kameleon, respectively.

Figure 2: Kameleon serving an IOC.

Figure 3: OPI displaying PVs fed by Kameleon.

FUTURE DEVELOPMENTS

As the development of controls intensifies at the ESS,
new functionalities are expected to be requested and
Kameleon will be developed accordingly. To anticipate

some of these requests, the following missing functionali-
ties were identified and are candidates for development in
the near future: Currently, Kameleon only supports serial-based de-

vices. Although this type of devices covers a wide
spectrum of the controls, register-based devices (e.g.,
MicroTCA AMC CPU) are equally important and
will be supported as well. The predefined behavior RANDOM will be extended
with additional random distributions, namely Normal
(Gaussian), Uniform and Poisson. A new predefined behavior for the Channel Access
[3] protocol will be added to ease the development of
.kam files when these are meant to be used in EPICS. In addition to the devices enumerated in Table 1,
many others – Leybold TD20, CAEN SY4527, MKS
946, Sorensen SGA 30X501D, to name a few – will
have .kam files developed for them. While it is possible to run several instances of
Kameleon at the same time using different ports, this
tool will be updated to cope with more than one cli-
ent (i.e., TCP/IP connection) at the time.

CONCLUSION

Many projects are using Kameleon where it has proven
to be valuable. For instance, a team at the CEA uses it to
develop IOCs and test these through continuous integra-
tion, while another one uses it to develop a gateway to
have EPICS communicate with PLCs. SINE2020 is an-
other project that uses Kameleon to develop a new proto-
col named Sample Environment Communication Protocol
(SECoP) as it does not depend on an accurate model of a
sample environment (i.e., real hardware).

At the ESS, Kameleon is instrumental for simulation of
devices to successfully enable a myriad of scenarios such
as development of EPICS devices support, IOCs, OPI
screens, testing of IOCs and alarm workflows.

In addition to new functionalities (e.g., register-based
devices support, predefined behavior for the Channel
Access protocol), more .kam files are expected to be de-
veloped in the future. These will improve Kameleon and
allow people to have access to an extensive collection of
simulators that may be used with this tool out-of-the-box.

ACKNOWLEDGEMENT

The authors would like to thank all the people that con-

tributed with ideas and participated in discussions to fur-

ther improve Kameleon, in particular Han Lee at the ESS.

REFERENCES

[1] Kameleon,
https://bitbucket.org/europeanspallationsourc
e/kameleon

[2] Client-server model,
https://en.wikipedia.org/wiki/Client%E2%80%93
server_model

[3] Channel Access,
http://www.aps.anl.gov/epics/docs/ca.php

THPAB136 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
4042Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T33 Online Modelling and Software Tools

