Author: Zou, Y.
Paper Title Page
WEOBA1 A Comparison of Interaction Physics for Proton Collimation Systems in Current Simulation Tools 2478
 
  • J. Molson, A. Faus-Golfe
    LAL, Orsay, France
  • R.B. Appleby, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    IIAA, Huddersfield, United Kingdom
  • R. Bruce, F. Cerutti, A. Ferrari, A. Mereghetti, S. Redaelli, K.N. Sjobak, V. Vlachoudis
    CERN, Geneva, Switzerland
  • H. Rafique
    University of Manchester, Manchester, United Kingdom
  • Y. Zou
    IHEP, Beijing, People's Republic of China
 
  Funding: The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
High performance collimation systems are required for current and proposed high energy hadron accelerators in order to protect superconducting magnets and experiments. In order to ensure that the collimation system designs are sufficient and will operate as expected, precision simulation tools are required. This paper discusses the current status of existing collimation system tools, and performs a comparison between codes in order to ensure that the simulated interaction physics between a proton and a collimator jaw is accurate.
 
slides icon Slides WEOBA1 [7.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB046 SixTrack for Cleaning Studies: 2017 Updates 3811
 
  • A. Mereghetti, R. Bruce, F. Cerutti, R. De Maria, A. Ferrari, M. Fiascaris, P.D. Hermes, D. Mirarchi, P.G. Ortega, D. Pastor Sinuela, E. Quaranta, S. Redaelli, K.N. Sjobak, V. Vlachoudis
    CERN, Geneva, Switzerland
  • J. Molson
    LAL, Orsay, France
  • Y. Zou
    IHEP, Beijing, People's Republic of China
 
  SixTrack is a single particle tracking code for simulating beam dynamics in ultra-relativistic accelerators. It is widely used at the European Organisation for Nuclear Research (CERN) for predicting dynamic aperture and cleaning inefficiency in large circular machines like the Super Proton Synchrotron (SPS), the Large Hadron Collider (LHC) and the Future Circular Collider (FCC). The code is under continuous development, to both extend its physics models, and enhance performance. The present work gives an overview of developments, specifically aimed at extending the code capabilities for cleaning studies. They mainly involve: the online aperture check; the possibility to perform simulations coupled to advanced Monte Carlo codes like Fluka or using the scattering event generator of the Merlin code; the generalisation of tracking maps to ion species; the implementation of composite materials of relevance for the future upgrades of the LHC collimators; the physics of interactions with bent crystals. Plans to merge these functionalities into a single version of the SixTrack code will be outlined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)