Author: Zolotarev, K.
Paper Title Page
WEPIK068 Non-Linear Beam Dynamics Studies of the CLIC Damping Wiggler Prototype 3087
 
  • J. Gethmann, A. Bernhard, E. Blomley, E. Huttel, A.-S. Müller, A.I. Papash, M. Schedler
    KIT, Karlsruhe, Germany
  • Y. Papaphilippou, P. Zisopoulos
    CERN, Geneva, Switzerland
  • K. Zolotarev
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Julian Gethmann acknowledges the support by the DFG-funded Doctoral School Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology
First beam dynamics studies of a damping wiggler prototype for the CLIC damping rings have been carried out at the KIT storage ring. Effects of the 2.9 T superconducting wiggler on the electron beam in the 2.5 GeV standard operation mode have been measured and compared with theoretical predictions. Higher order multipole components were investigated using local orbit bump measurements. Based on these findings the simulation models for the storage ring optic have been adjusted. The refined optics model has been applied to the 1.3 GeV, low-operation case. This case will be used to experimentally benchmark beam dynamics simulations involving strong wiggler fields and dominant collective effects. We present these measurements, comparisons and the findings of the simulations with the updated low-mode optics model.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)