Author: Zhukov, A.P.
Paper Title Page
MOPIK118 Model Based Optics Studies in the MEBT Section of SNS 814
 
  • A.P. Shishlo, A.V. Aleksandrov, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
The paper presents the beam dynamics studies for the Medium Energy Beam Transport (MEBT) section of the Spallation Neutron Source (SNS) accelerator. The analysis of measurements is based on the PyORBIT linac model. The diagnostics data includes wire scanners' profiles, slit-harp and slit-slit transverse emittances, MEBT re-bunchers calibration data, and bunch length measurements. The MEBT is a matching section between RFQ and a Drift Tube Linac (DTL). It is also a place for beam halo scraping which helps to reduce beam loss in downstream linac sections. The linac simulation code was benchmarked against the diagnostics data.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA145 Commissioning of the New SNS RFQ and 2.5MeV Beam Test Facility 2438
 
  • A.V. Aleksandrov, S.M. Cousineau, M.T. Crofford, B. Han, Y.W. Kang, A.A. Menshov, A. Webster, R.F. Welton, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • B.L. Cathey, C.C. Peters
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
SNS injector uses a four-vane 402.5MHz RFQ for accelerating the H beam with 38mA peak current and 7% duty factor to 2.5MeV. The original RFQ, commissioned in 2002, has been able to support SNS operation up to the design average beam power of 1.4MW. However, several problems have developed over almost fifteen years of operation. A new RFQ with design changes addressing the known problems has been built and commissioned up to the design beam power at the new SNS Beam Test Facility (BTF). The BTF consists of a 65 keV H ion source, a 2.5MeV RFQ, a beam line with advanced transverse and longitudinal beam diagnostics and a 6 kW beam dump. This presentation provides results of the RFQ commissioning and the BTF beam instrumentation commissioning. We also discuss progress of the ongoing multidimensional phase space characterization experiment and future beam dynamics study planned at the SNS BTF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA146 6D Phase Space Measurement of Low Energy, High Intensity Hadron Beam 2441
 
  • B.L. Cathey
    ORNL RAD, Oak Ridge, Tennessee, USA
  • A.V. Aleksandrov, S.M. Cousineau, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. The work has been partially supported by NSF grant 1535312
The goal of this experiment is to measure the full 6D phase space of a low energy, high intensity hadron beam. We use 4D emittance measurement techniques for the transverse plane combined with dispersion measurement and a beam shape monitor to provide the longitudinal phase space. The Beam Testing Facility (BTF) at the Spallation Neutron Source (SNS), a 2.5 MeV functional duplicate front end of the SNS accelerator is being used to facilitate the measurement. Early 6D measurements will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA150 New Controller for High Voltage Converter Modulator at Spallation Neutron Source 3621
 
  • D.L. Brown, X. Geng, S.W. Lee, M. Wezensky, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
We have developed a new control system for the high voltage converter modulator at the Spallation Neutron Source to replace the original control system designed by Los Alamos National Laboratory which is approaching obsolescence. The new controller, based on national instruments PXI/FlexRIO FPGA hardware, offers enhancements over the original system such as modular construction, flexibility and non-proprietary software. The new controller also provides new capabilities like modulator pulse flattening, waveform capture & first fault detection. This paper will discuss the design of the system, including the human machine interface, based on lessons learned at the Spallation Neutron Source and other projects. It will also discuss performance and other issues related to operation in an accelerator facility which requires high availability. To date half of the high voltage converter modulators have been upgraded with the new controller with the remainder scheduled for completion by mid-2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA150  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA093 Open XAL Status Report 2017 4676
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    SLAC, Menlo Park, California, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, B.T. Folsom, E. Laface, Y.I. Levinsen, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
  • J.E. Muller
    CERN, Geneva, Switzerland
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010 The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, interaction with control system and software organization. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)