Author: Zhao, F.X.
Paper Title Page
THPIK061 3D Model Analysis of Cavity for CSNS DTL 4236
 
  • P.H. Qu, M.X. Fan, B. Li, Y. Wang
    CSNS, Guangdong Province, People's Republic of China
  • Q. Chen, K.Y. Gong, A.H. Li, H.C. Liu, F.X. Zhao
    IHEP, Beijing, People's Republic of China
 
  An Alvarez-type Drift tube linac (DTL) was utilized to accelerate an H ion beam from 3 MeV to 80 MeV of China Spallation neutron source (CSNS). RF field profile is always deviate from the design curve due to errors in fabrication and assembly of the structure cells, thus RF tuning of DTL is necessary. CSNS DTL operates in zero mode and has long tank, so accelerating field of which is unstable, this problem was solved through adding post couplers at the both side of cavity wall. In order to speed up the schedule of DTL low power RF tuning, we analyzed the operating mode, field flatness with slug tuners, field stabilization with post couplers by CST Micro wave studio (MWS) mainly with eigenmode solver in advance. Considering saving the computer memory and increasing the calculation speed, we divided each tank model into three short units. Slug tuner depth and PC-DT gap of DTL-1 and DTL-3 by simulation were shown which improved the efficiency of CSNS DTL RF tuning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)