Author: Yoshii, M.
Paper Title Page
TUPVA091 Batch Compression Scheme for Multi-MW J-PARC 2294
 
  • C. Ohmori, M. Furusawa, K. Hara, K. Hasegawa, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • M. Nomura, T. Shimada, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
 
  Replacement of all J-PARC MR cavities has completed in this summer to increase the RF voltage. Nine sets of new high-gradient FT3L cavities will generate the required RF voltage for the 1.16 second cycle operation. Upgrade of magnet power supplies is planned and the cycle time becomes 1.3 seconds from the present 2.48 seconds in FY2018 to achieve the beam power of 750 kW-1 MW. For the further improvement of beam power, a new rapid-cycling booster is considered to increase the injection energy of the MR from 3 GeV to 6-8 GeV. By the reduction of the space charge effects, the injection time can be extended and a batch compression scheme becomes possible. It will increase the number of bunches from 8 to 11 or 12 during the beam injection. And, recent beam study of the 3 GeV RCS shows the potential capability of 6.6·1013 proton per bunch. Combining these improvements with the booster, the beam power of 3 MW will be manageable.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA092 An Upgrade Scenario of RF System to Achieve 1.6 MW Beam Acceleration in J-PARC RCS 2297
 
  • M. Yamamoto, M. Nomura, T. Shimada, F. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Hara, K. Hasegawa, C. Ohmori, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  The J-PARC RCS has successfully accelerated 1 MW equivalent proton beam. However, the beam commissioning results and the particle tracking simulation suggest that the RCS has possibility to accelerate up to 1.6 MW beam. Since the power supply of the rf system almost reaches the limit under the condition of 1 MW beam, we consider the possible upgrade scenario of the rf system to accelerate 1.6 MW beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXCB1 The Energy Efficiency of High Intensity Proton Driver Concepts 4842
 
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • J. Grillenberger, M. Seidel
    PSI, Villigen PSI, Switzerland
  • S.-H. Kim
    ORNL, Oak Ridge, Tennessee, USA
  • M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.  
slides icon Slides FRXCB1 [2.964 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-FRXCB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)