Author: York, R.C.
Paper Title Page
TUPVA072 Conceptual Injector Design for an Electron-Ion-Collider Front-End 2246
 
  • H. Podlech, M. Busch, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • R.C. York
    NSCL, East Lansing, Michigan, USA
  • C. Zhang
    GSI, Darmstadt, Germany
 
  An electron-hadron collider (EIC) could be the next large-scale nuclear physics facility in the United States. A hadron linac with a final energy of 40 AMeV (heavy ions) and up to 130 MeV for protons with an upgrade path to higher energies is required as the first step of the hadron accelerator chain. From a cost point of view superconducting technology seems to be the better choice above an energy of about 5 AMeV compared to a room temperature (rt) solution. This paper describes the conceptual design of a rt front-end up to an energy of 5 AMeV appropriate as initial element of the EIC hadron linac. It consists of two separate injectors based on efficient H-mode cavities, one optimized for heavy ions (Pb30+) and the other optimized for protons and deuterons. Beam dynamics and first RF simulations are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)