Author: Wehrle, U.
Paper Title Page
TUPIK032 AWAKE Proton Beam Commissioning 1747
 
  • J.S. Schmidt, D. Barrientos, M. Barros Marin, B. Biskup, A. Boccardi, T.B. Bogey, T. Bohl, C. Bracco, S. Cettour Cave, H. Damerau, V. Fedosseev, F. Friebel, S.J. Gessner, A. Goldblatt, E. Gschwendtner, L.K. Jensen, V. Kain, T. Lefèvre, S. Mazzoni, J.C. Molendijk, A. Pardons, C. Pasquino, S.F. Rey, H. Vincke, U. Wehrle
    CERN, Geneva, Switzerland
  • J.T. Moody
    MPI-P, München, Germany
  • K. Rieger
    MPI, Muenchen, Germany
 
  AWAKE will be the first proton driven plasma wakefield acceleration experiment worldwide. The facility is located in the former CNGS area at CERN and will include a proton, laser and electron beam line merging in a 10 m long plasma cell, which is followed by the experimental diagnostics. In the first phase of the AWAKE physics program, which started at the end of 2016, the effect of the plasma on a high energy proton beam will be studied. A proton bunch is expected to experience the so called self-modulation instability, which leads to the creation of micro-bunches within the long proton bunch. The plasma channel is created in a rubidium vapor via field ionization by a TW laser pulse. This laser beam has to overlap with the proton beam over the full length of the plasma cell, resulting in tight requirements for the stability of the proton beam at the plasma cell in the order of ~ 0.1 mm. In this paper the beam commissioning results of the ~810 m long transfer line for proton bunches with 3·1011 protons/bunch and a momentum of 400 GeV/c will be presented with a focus on the challenges of the parallel operation of the laser and proton beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK119 Control of Intra-Bunch Vertical Instabilities at the SPS - Measurements and Technology Demonstration 2005
 
  • J.D. Fox, J.E. Dusatko, C.H. Rivetta, O. Turgut
    SLAC, Menlo Park, California, USA
  • H. Bartosik, W. Höfle, K.S.B. Li, E. Métral, B. Salvant, U. Wehrle
    CERN, Geneva, Switzerland
  • S. De Santis
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract # DOE-AC02-76SF00515, the US LHC Accelerator Research Program ( LARP), the FP7 High Luminosity LHC Project and the US-Japan Cooperative Program in High Energy Physics
We present recent measurements demonstrating control of unstable beam motion in single bunch and bunch train configurations at the SPS. The work is motivated by anticipated intensity increases from the LIU and HL-LHC upgrade programs, and has included the development of a GHz bandwidth reconfigurable 4 GS/S signal processor with wideband kickers and associated amplifiers. The system was operated at 3.2GS/s with 16 samples across a 5 ns RF bucket (4.2 ns bunch at injection). The experimental results confirm damping of intra-bunch instabilities in both Q20 and Q26 optics configurations for intensities of 2x1011 P/bunch. Instabilities with growth times of 200 turns are well-controlled from injection, consistent with the achievable gains for the 2 installed stripline kickers with 1 kW broadband power. Measurements from multiple studies in single-bunch and bunch train configurations show achieved damping rates, control of multiple intra-bunch modes, behavior of the system at injection and final damped noise floor. We present an analysis method to study the relative phase of slice motion during a transient to discriminate between TMCI and other types of Head-Tail instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)