Author: Weathersby, S.P.
Paper Title Page
THPAB088 Comparison of Theory, Simulation, and Experiment for Dynamical Extinction of Relativistic Electron Beams Diffracted Through a Si Crystal Membrane 3924
SUSPSIK064   use link to see paper's listing under its alternate paper code  
 
  • L.E. Malin, W.S. Graves, J. Spence, C. Zhang
    Arizona State University, Tempe, USA
  • R.K. Li, C. Limborg, E.A. Nanni, X. Shen, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  Diffraction in the transmission geometry through a single-crystal silicon slab is exploited to control the intensity of a relativistic electron beam. The choice of crystal thickness and incidence angle can extinguish or maximize the transmitted beam intensity via coherent multiple Bragg scattering; thus, the crystal acts as a dynamical beam stop through the Pendel'sung effect, a well-known phenomenon in X-ray and electron diffraction. In an initial experiment, we have measured the ability of this method to transmit or extinguish the primary beam and diffract into a single Bragg peak. Using lithographic etching of patterns in the crystal we intend to use this method to nanopattern an electron beam for production of coherent x-rays. We compare the experimental results with simulations using the multislice method to model the diffraction pattern from a perfect silicon crystal of uniform thickness, considering multiple scattering, crystallographic orientation, temperature effects, and partial coherence from the momentum spread of the beam. The simulations are compared to data collected at the ASTA UED facility at SLAC for a 340 nm thick Si(100) wafer with a beam energy of 2.35 MeV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK125 Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities 4395
SUSPSIK097   use link to see paper's listing under its alternate paper code  
 
  • A.D. Cahill, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V.A. Dolgashev, S.G. Tantawi, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  Funding: Work Supported by DOE/SU Contract DE-AC02-76-SF00515, US NSF Award PHY-1549132, the Center for Bright Beams, and DOE SCGSR Fellowship.
RF breakdown is one of the major factors limiting the operating accelerating gradient in rf particle accelerators. We conjecture that the breakdown rate is linked to the movements of crystal defects induced by periodic mechanical stress. Pulsed surface heating possibly creates a major part of this stress. By decreasing crystal mobility and increasing yield strength we hope to reduce the breakdown rate for the same accelerating gradient. We can achieve these properties by cooling a copper accelerating cavity to cryogenic temperatures. We tested an 11.4 GHz cryogenic copper accelerating cavity at high power and observed that the rf and dark current signals are consistent with Q0 changing during rf pulses. To take this change in Q0 into account, we created a non-linear circuit model in which the Q0 is allowed to vary inside the pulse. We used this model to process the data obtained from the high power test of the cryogenic accelerating structure. We present the results of measurements with low rf breakdown rates for surface electric fields near 500 MV/m for a shaped rf pulse with 150 ns of flat gradient.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)