Author: Wang, Z.
Paper Title Page
TUPAB083 Commissioning Experience and Beam Optimization for DCLS Linac 1509
 
  • M. Zhang, D. Gu, Q. Gu, D. Huang, Z. Wang
    SINAP, Shanghai, People's Republic of China
 
  Dalian Coherent Light Source (DCLS), which will focus on the Physical Chemistry with time-resolved pump-probe experiments and EUV absorption spectroscopy techniques, is the first high gain FEL user facility in China. The 300MeV linac consists of a laser-driven rf-gun followed by 7 Sband accelerating tubes. A magnetic chicane is adopted to get the desired 300A peak current. After 5 months component installation, first photoelectrons were generated on 17 August 2016. In this paper, we give a summary of the commissioning experience and the beam parameters measurements. In addition, beam jitter sources are studied based on real machine performances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB084 Beam Stability Modeling and Jitter Control for SXFEL Linac 1513
 
  • M. Zhang, R.B. Deng, D. Gu, Q. Gu, D. Huang, Z. Wang
    SINAP, Shanghai, People's Republic of China
 
  FEL operations foresee stringent requirements for the stability of the global linac output parameters and this requirement is particularly stringent for the successful operation of an externally seeded FEL. In order to understand the sensitivity of these parameters to jitters of various error sources along the SXFEL linac, studies have been performed based on analytical methods and tracking code simulations. Using the tolerance budget as guidance, beam jitter control techniques are discussed on the view of the beam dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK024 Study of High Transformer Ratio Plasma Wakefield Acceleration for Accelerator Parameters of SXFEL Using 3D PIC Simulations 1734
 
  • S. Huang, J.F. Hua, F. Li, W. Lu, C.H. Pai, Y. Wan, Y.P. Wu, S.Y. Zhou
    TUB, Beijing, People's Republic of China
  • W. An, C. Joshi, W.B. Mori, X.L. Xu
    UCLA, Los Angeles, California, USA
  • H.X. Deng, B. Liu, D. Wang, Z. Wang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  High transformer ratio (HTR) Plasma Wakefield Accelerator (PWFA) based on shaped electron bunches is an important topic of plasma wakefield acceleration for future light sources and colliders [1]. To explore the possibility of implementing PWFA at SXFEL, we performed 3D PIC simulations using shaped electron beam parameters obtained by start-to-end beam line simulations [2]. The PIC simulations show that an average transformer ratio around 4 can be maintained for about 10 cm long low density plasma, and the energy gain of the trailing bunch eventually reaches 5.9 GeV. Simulations and analysis are also performed to check the effects of transverse beam size on HTR acceleration. In addition, plasma density downramp injection has also been tested as a possible high brightness injection method for HTR acceleration, and preliminary results will be presented.
[*] Lu W, An W, Huang C, et al. High Transformer ratio PWFA for Applications on XFELs. Bulletin of the American Physical Society, 2009, 54.
[**] Z. Wang, Z. T. Zhao, et al. private communication
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB065 Proposal for the Generation of Terawatt, Attosecond X-Ray Pulses in Free Electron Lasers 2723
 
  • Z. Wang, C. Feng, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  A feasible novel method is proposed to generate attosecond terawatt X-ray radiation pulse in free electron lasers, which could find its application on multiple science fields. In our scheme, a chirped laser is employed to generate a chirped periodic current enhancement and a series of spatiotemporal shifters are applied between the undulator sections to generate ultra-short radiation pulse. Three-dimensional start-to-end simulations are carried out and the calculation results show that a 0.15nm X-ray pulse with the peak power of about 1TW and the pulse length of 0.1fs could be achieved in our scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)