Author: Vogt, M.
Paper Title Page
MOPAB044 X-Band TDS Project 184
 
  • B. Marchetti, R.W. Aßmann, B. Beutner, J. Branlard, F. Christie, R.T.P. D'Arcy, W. Decking, U. Dorda, J. Herrmann, M. Hoffmann, M. Hüning, O. Krebs, G. Kube, S. Lederer, F. Ludwig, F. Marutzky, D. Marx, J. Osterhoff, I. Peperkorn, S. Pfeiffer, F. Poblotzki, J. Rönsch-Schulenburg, J. Rothenburg, H. Schlarb, M. Scholz, S. Schreiber, M. Vogt, A. Wagner, T. Wilksen, K. Wittenburg
    DESY, Hamburg, Germany
  • M. Bopp, H.-H. Braun, P. Craievich, M. Pedrozzi, E. Prat, S. Reiche, K. Rolli, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W. Wuensch
    CERN, Geneva, Switzerland
 
  Based on the success of the X-Band Transverse Deflecting Structure (TDS) diagnostic at LCLS*, a collaboration between DESY, PSI and CERN has formed with the aim of developing and building an advanced modular X-Band TDS system. The designed TDS has the new feature of providing variable polarization of the deflecting field**. The possibility of changing the orientation of the streaking field of the TDS to an arbitrary azimuthal angle allows for 3D characterization of the phase space using tomographic methods***. Moreover the complete 6D characterization of the beam phase space is possible by combining this technique with quadrupole scans and a dipole spectrometer. As this new cavity design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field, the high precision tuning-free assembly procedures developed at PSI for the SwissFEL C-band accelerating structures will be used for the manufacturing****. The high-power rf system is based on the CERN-based X-band test stands. We summarize in this work the status of the projects and its main technical parameters.
* C. Behrens et al. , Nat. Comm. 4762 (2014).
** A. Grudiev, CLIC-note-1067 (2016).
*** D. Marx et al., contribution to this conference proceedings.
**** U. Ellenberger et al., FEL 2013, TUPS017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB051 Progress in FLASH Optics Consolidation 211
 
  • J. Zemella, M. Vogt
    DESY, Hamburg, Germany
 
  FLASH is the superconducting soft X-ray Free Electron Laser in Hamburg at DESY, Germany. A precise knowledge of the beam optics is a key aspect of the operation of a SASE FEL. A campaign of optics consolidation has started in 2013 when the second beam line FLASH2 was installed downstream of the FLASH linac. We give an update on progress of this effort and on recent results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB017 Generation of Ultra-Short Electron Bunches and FEL Pulses and Characterization of Their Longitudinal Properties at FLASH2 2600
 
  • F. Christie, J. Rönsch-Schulenburg, S. Schreiber, M. Vogt
    DESY, Hamburg, Germany
 
  The free-electron laser in Hamburg (FLASH) is a user facility, delivering soft X-ray radiation, consisting of two beam lines, FLASH1 and FLASH2. The injector and the main linac are shared between both beam lines. Starting in 2014, FLASH2 has been commissioned for user operation. Currently, there is no hardware installed for the direct measurement of the electron bunch length nor the photon pulse duration at FLASH2. Exact knowledge of the pulse duration is essential for time-resolved user experiments performed at FLASH. Therefore, we are designing a modified beam line, containing a new type of X-band deflecting cavity* and a dipole, downstream of the FLASH2 undulator, to map the longitudinal phase space onto a beam screen. Anticipating the feasibility of measuring the longitudinal phase space with high resolution, a study on optimizing the free-electron laser (FEL) performance for shortest bunches is ongoing.
*B. Marchetti et al., X-Band TDS project, contribution to these conference proceedings
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB021 Experience with Multi-Beam and Multi-Beamline FEL-Operation 2615
 
  • J. Rönsch-Schulenburg, B. Faatz, K. Honkavaara, M. Kuhlmann, S. Schreiber, R. Treusch, M. Vogt
    DESY, Hamburg, Germany
 
  DESY's free-electron laser FLASH provides soft X-ray pulses for scientific users at wavelengths down to 4 nm simultaneously in two undulator beamlines. They are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. The superconducting technology allows the acceleration of electron bunch trains of several hundred bunches with a spacing of 1 microsecond or more and a repetition rate of 10 Hz. A fast kicker-septum system directs one part of the bunch train to FLASH1 and the other part to FLASH2 keeping the full 10 Hz repetition rate for both. The unique setup of FLASH allows independent FEL pulse parameters for both beamlines. In April 2016, simultaneous operation of FLASH1 and FLASH2 for external users started. This paper reports on our operating experience with this type of multi-beam, multi-beamline set-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB025 Status of the Soft X-Ray Free Electron Laser FLASH 2628
 
  • M. Vogt, B. Faatz, K. Honkavaara, M. Kuhlmann, J. Rönsch-Schulenburg, S. Schreiber, R. Treusch
    DESY, Hamburg, Germany
 
  The superconducting free-electron laser user facility FLASH at DESY in Hamburg, routinely produces several thousand photon pulses per second. The operational parameters cover a wavelength range from 90 nm down to 4 nm with pulse energies from several uJ up to 1 mJ and with pulse durations of several hundred fs down to a few fs. The FLASH injector and linac drives two undulator beam lines (FLASH1, FLASH2) and therefore FLASH is capable of serving 2 independent experiments with photon pulse (sub-) trains of several 100 bunches at the full train repetition frequency of 10 Hz. We summarize here the highlights of the user operation at FLASH1/2 and the study program (machine development and FEL optimization) of the FLASH facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB014 An Adaptive Mesh-Based Method for the Efficient Simulation of LSC-Driven Microbunching Gain in FEL Applications 3720
 
  • Ph. Amstutz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • M. Vogt
    DESY, Hamburg, Germany
 
  Electron beams with high peak current as they are required for the operation of free-electron lasers (FELs) are often generated by means of a series of magnetic bunch compressors. In conjunction with a collective coherent force, e.g. longitudinal space-charge (LSC), bunch compressors can possibly cause a wavelength dependent amplification of initial density inhomogeneities, potentially to an extent detrimental to the operation of the FEL. A common model, consisting of LSC, acceleration (kicks), and magnetic chicanes (drift-type maps), is governed by a time-discrete Vlasov-Poisson system. Such systems have been successfully simulated using mesh based representations of the phase space density (PSD) and the method of characteristics for the update step. However, for the irregular and exotic PSDs, prevalent in FEL applications, a homogeneous high resolution discretization on a naive rectangular mesh can be prohibitively wasteful. Here we present an approach based on adaptive tree refinement that addresses the complexity of the PSDs and allows for the efficient simulation of LSC-driven micro-bunching in FELs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)