Author: Tiede, R.
Paper Title Page
MOPIK068 Beam Dynamics Design Parameters for KONUS Lattices 683
 
  • R. Tiede, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  The 'Combined Zero-Degree Structure' ('Kombinierte Null Grad Struktur - KONUS') beam dynamics concept has been successfully applied on several linacs, some of them in routine operation since decades. However, the KONUS lattice parameters optimization is often done in a results-oriented approach, depending on the designers' experience. This paper focuses on the description of the longitudinal beam motion along one KONUS lattice period. A test lattice is used for demonstrating the potential of KONUS lattices with respect to stable, periodic beam motion with emittance growth rates similar to those of conventional designs. The main objective of this ongoing work is to derive more general rules for the parametrization of KONUS lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA064 Updated Cavities Design for the FAIR p-Linac 2227
 
  • A. Almomani, M. Busch, F.D. Dziuba, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main, Germany
  • F.D. Dziuba, C.M. Kleffner
    GSI, Darmstadt, Germany
 
  The research program of antiproton beams for the FAIR facility requires a dedicated 68 MeV, 70 mA proton injector. This injector will consist of an RFQ followed by six room temperature Crossbar H-type CH-cavities operated at 325 MHz. The beam dynamics had been revised by IAP Frankfurt in collaboration with GSI-FAIR in Darmstadt to further optimize the design. This step was followed by cavity RF design. The detailed mechanical cavity design will begin in 2017, while the quadrupole lenses are under production already. In this paper, besides an overview the RF design of the coupled cavities with integrated focusing triplets will be a main focus.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA067 The KONUS IH-DTL Proposal for the GSI UNILAC Poststripper Linac Replacement 2230
SUSPSIK043   use link to see paper's listing under its alternate paper code  
 
  • H. Hähnel, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  Funding: BMBF 05P15RFRBA
The GSI UNILAC will serve as the main injector for the upcoming FAIR project. Since the existing Alvarez DTL is in operation for more than 40 years, it has to be replaced to ensure reliable operation in the future. To this purpose a compact and efficient linac design based on IH-type cavities and KONUS beam dynamics has been designed at IAP Frankfurt*. It consists of five 108 MHz IH-type cavities that can be operated by the existing UNILAC RF amplifier structure. The transversal focusing scheme is based on magnetic quadrupole triplet lenses. The optimized design provides full transmission and low emittance growth for the design current of 15 emA U28+ accelerating the beam from 1.4 MeV/u to 11.4 MeV/u. Extensive error studies were performed to define tolerances and verify the stability of the design with respect to misalignment and injection parameters. The design provides a compact and cost efficient alternative to a new Alvarez linac. With a total length of just 22.8 meters it will leave room for future energy upgrades in the UNILAC tunnel.
* H. Hähnel, U. Ratzinger, R. Tiede, Efficient Heavy Ion Acceleration with IH-Type Cavities for High Current Machines in the Energy Range up to 11.4 MeV/u, in Proc. LINAC2016, paper TUPLR070
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)