Author: Thompson, N.
Paper Title Page
WEPAB097 Modelling Two-Colour FEL with Wide Wavelength Separation and Individual Polarisation Tuning 2808
SUSPSIK016   use link to see paper's listing under its alternate paper code  
 
  • D. Bultrini, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R.J. Allan
    The Hartree Centre, Science and Technology Facilities Council (STFC/DL), Warrington, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  Free electron lasers (FELs) are currently enabling cutting edge research in chemistry, biology and physics. We use simulations to assess a new FEL capability that would add to the impressive repertoire of experiments made possible by the technology: a two-colour independent polarization mode, which allows for light pulses with variable temporal separation, individually tuneable polarisation, and widely separated wavelength. Simulations are carried out using the broad bandwidth FEL code Puffin, the results of which are used to discuss the radiation properties of the output. This scheme is applicable to existing and proposed facilities which feature undulators with variable ellipticity and gap.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK100 The Applicability of NEG Coated Undulator Vessels for the CLARA FEL Test Facility 3181
 
  • O.B. Malyshev, K.B. Marinov, K.J. Middleman, N. Thompson, R. Valizadeh, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • O.B. Malyshev, K.J. Middleman, N. Thompson, R. Valizadeh, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  CLARA is a FEL test facility at Daresbury Laboratory (DL), UK. The undulator vacuum chamber is 20 m long with inner diameter 6 mm and its vacuum performance can benefit from a NEG coating. The thickness of the coating layer must be carefully optimised. A layer ~ 1 um would help the vacuum but a thinner layer would be partially transparent for the EM field reducing the resistive wall wakefields due to the NEG. A very thin layer, however, may not yield the necessary vacuum performance. Two types of NEG coatings produced at DL - dense and columnar - were considered. Their bulk conductivities were measured in a separate study. The resistive wall wakefield impedance was calculated following the standard approach for multilayer vessels. A 250 fs rms electron bunch was generated in ASTRA and its wakefield was obtained from the vessel impedance. The FEL performance was then studied through GENESIS simulations and the result compared to the case with no wakefields. It was found that NEG layers thicker than 100 nm give an unacceptable reduction of the FEL power and the vacuum performance of such thin coatings is unknown. Possible solutions to this problem are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB053 Laser Heater Deisgn for the CLARA FEL Test Facility 3833
 
  • A.D. Brynes, S.P. Jamison, B.D. Muratori, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.P. Jamison, B.D. Muratori, N. Thompson, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  We present considerations of microbunching studies in the CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility under construction at Daresbury Laboratory. CLARA, a high-brightness electron linac, presents an opportunity to study the microbunching instability. A number of theoretical models have been proposed concerning the causes of this instability, and it has also been observed at various FEL facilities. We have applied these models to the CLARA FEL, and propose a suitable laser heater design which will provide flexibility in terms of the range of modes of operation for CLARA. We also propose a method for inducing and controlling the microbunching instability via pulse stacking of the photoinjector laser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK108 Beam Based Alignment Studies for the CLARA FEL Test Facility 1971
 
  • J.K. Jones, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA (Compact Linear Accelerator for Research and Applications) test facility is designed to experimentally demonstrate innovative FEL schemes for future light source applications. Such schemes can place strict requirements on the accelerator beam properties as well as the relative alignment of the beam in the FEL radiators and modulators. Beam-based alignment (BBA) of the FEL section is therefore an operational requirement for all advanced FEL facilities. In this paper we demonstrate results of CLARA BBA simulations, and also report initial simulation results from the use of non-linear algorithms to optimise the FEL performance directly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB089 Design Study for the Generation of Few-Cycle FEL Pulses Using Mode-Locked Afterburner Scheme at Clara 2783
SUSPSIK015   use link to see paper's listing under its alternate paper code  
 
  • C.L. Shurvinton, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Ultrashort pulse operation in FELs is a highly desirable capability for imaging matter on ultrafast timescales. This paper presents a design study for a proof-­of-­principle demonstration of the mode-locked afterburner (ML-AB) scheme on the FEL test facility CLARA. A start-to-end simulation has been constructed using the time-­dependent three-­dimensional FEL code GENESIS 1.3 to evaluate the performance of the scheme. The ability to produce pulses of several femtoseconds in duration with peak powers of the order of 100 MW at 100 nm wavelength is predicted.­ Such pulses have duration of 2 fs (6 optical cycles), a factor of ~5 shorter than the FEL cooperation length. Potential routes for further optimisation and alternative operating modes are explored.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB090 Developments in the CLARA FEL Test Facility Accelerator Design and Simulations 2787
 
  • P.H. Williams, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. The requirement to co-propagate the beam with laser seeds of very different wavelengths has led to a redesign of the section preceding the undulators, with a dogleg being replaced by a chicane. Additional refinements of the facility design include the inter-undulator sections. With this finalised design we show start to FEL simulations for all beam modes envisaged.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)