Author: Sullivan, M.K.
Paper Title Page
WEPIK004 Luminosity- and Beam- Induced Backgrounds for the FCC-ee Interaction Region Design 2914
 
  • G.G. Voutsinas, P. Janot, A.M. Kolano, E. Perez, N.A. Tehrani
    CERN, Geneva, Switzerland
  • N. Bacchetta
    INFN- Sez. di Padova, Padova, Italy
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  A preliminary study on machine induced backgrounds has been performed for the proposed FCC-ee interaction region (IR) and proto-detector. Synchrotron radiation has the strongest impact on the present design of the IR and both radiation from dipoles and quadrupoles have been taken into account. The effect of luminosity backgrounds like gamma gamma to hadrons and pair production have also been studied. The impact of background particles on the detector occupancy has also been studied in full simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK041 Update on the JLEIC Electron Collider Ring Design 3018
 
  • Y.M. Nosochkov, Y. Cai, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, F.C. Pilat, G.H. Wei, Y. Zhang
    JLab, Newport News, Virginia, USA
  • M.-H. Wang
    Self Employment, Private address, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under US DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported by the US DOE Contract DE-AC02-76SF00515.
We present an update on the lattice design of the electron ring of the Jefferson Lab Electron-Ion Collider (JLEIC). The electron and ion collider rings feature a unique figure-8 layout providing optimal conditions for preservation of beam polarization. The rings include two arcs and two intersecting long straight sections containing a low-beta interaction region (IR) with special optics for detector polarimetry, electron beam spin rotator sections, ion beam cooling sections, and RF-cavity sections. Recent development of the electron ring lattice has been focused on minimizing the beam emittance while providing an efficient non-linear chromaticity correction and large dynamic aperture. We describe and compare three lattice designs, from which we determine the best option.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)