Author: Stratakis, D.
Paper Title Page
MOPAB140 Phase-Space Analysis Using Tomography for the Muon g-2 Experiment at Fermilab 462
 
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
In the next decade the Fermilab Muon Campus will host two world class experiments dedicated to the search for signals of new physics. The Muon g-2 experiment will determine with unprecedented precision the anomalous magnetic moment of the muon. The Mu2e experiment will improve by four orders of magnitude the sensitivity on the search for the as-yet unobserved Charged Lepton Flavor Violation process of a neutrinoless conversion of a muon to an electron. Maintaining and preserving a high density of particles in phase-space is an important requirement for both experiments. This paper presents a new experimental method for mapping the transverse phase space of a particle beam based on tomographic principles. We simulate our technique using the tracking code GEANT4, to ascertain accuracy of the reconstruction. Then we apply the technique to a series of proof-of-principle simulation tests to study injection, transport and extraction of muon and proton beams for the Fermilab g-2 and Mu2e Experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB141 Instrumentation and Its Interaction With the Secondary Beam for the Fermilab Muon Campus 466
 
  • D. Stratakis, B.E. Drendel, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Fermilab Muon Campus will host the Muon g-2 experiment - a world class experiment dedicated to the search for signals of new physics. Strict demands are placed on the beam diagnostics in order to ensure delivery of high quality beams to the storage ring with minimal losses. In this study, we briefly describe the available secondary beam diagnostics for the Fermilab Muon Campus. Then, with the aid of numerical simulations we detail their interaction with the secondary beam. Finally, we compare our results against theoretical findings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK110 Update on Bmad Simulations From Target to Storage Ring for the New Muon G-2 Experiment at Fermilab 791
 
  • M. Korostelev, I.R. Bailey, A.T. Herrod, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • A.T. Herrod, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  The new muon g-2 experiment at Fermilab (E989) aims to measure the anomalous magnetic moment of the muon to an uncertainty of 140 ppb. The existing accelerator facility at Fermilab is being adapted to the requirements of the g-2 experiment and the baseline lattice design is now established. This paper presents the results of beam simulations and spin tracking carried out using the Bmad software package for the g-2 beam transport system, including a variant which bypasses the delivery ring as proposed for the beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK038 Muon Sources for Particle Physics - Accomplishments of MAP 1766
 
  • D.V. Neuffer, D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings
    Muons, Inc, Illinois, USA
  • J.-P. Delahaye
    SLAC, Menlo Park, California, USA
  • M.A. Palmer
    BNL, Upton, Long Island, New York, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
  • D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: supported by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U. S. Department of Energy.
The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a ' storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of 'e (''e) and ''' ('') beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK119 Lost Muon Study for the Muon g-2 Experiment at Fermilab 3230
 
  • J.D. Crnkovic, W. Morse
    BNL, Upton, Long Island, New York, USA
  • S. Ganguly
    University of Illinois at Urbana-Champaign, Urbana, USA
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK120 Simulated performance of the Production Target for the Muon g-2 Experiment at Fermilab 3234
 
  • D. Stratakis, M.E. Convery, J.P. Morgan, D.A. Still, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
The Muon g-2 Experiment plans to use the Fermilab Recycler Ring for forming the proton bunches that hit its production target. The proposed scheme uses one RF system, 80 kV of 2.5 MHz RF. In order to avoid bunch rotations in a mismatched bucket, the 2.5 MHz is ramped adiabatically from 3 to 80 kV in 90 ms. In this study, the interaction of the primary proton beam with the production target for the Muon g-2 Experiment is numerically examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA033 Towards commissioning the Fermilab Muon g-2 Experiment 4505
 
  • D. Stratakis, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • A. Fiedler, M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • S-C. Kim
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
Starting this summer, Fermilab will host a key exper-iment dedicated to the search for signals of new phys-ics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contami-nation, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being send to the experi-ment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)