Author: Song, Y.
Paper Title Page
MOPIK013 Design and Simulation of a C-Band Photocathode RF Gun With a Coaxial Coupler for UEM 525
 
  • T. Chen, Y.J. Pei, Y. Song
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A ultrafast electron microscope (UEM) has been become much more important research instrument and has been widely used in many fields. As a part of the UEM, a photocathode RF gun working at C-band frequency of 5712MHz is being developed, which provides electron beam with high qualities for UEM. This paper presents the physics and structure design, including optimization of cavity shape parameter for improving shunt impedance and Q factor. We adopt a novel coaxial coupler, which could decrease the multipole field and decrease the focusing coil size, build better accelerating field in the RF gun. In this paper, we discussed the simulation process and results of the RF gun, especially the design of the coaxial input coupler was described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB082 Research of L-Band Disk-Loaded Waveguides Travelling Wave Accelerating Structures for a High Power Linac 1506
 
  • Y.M. Zhang
    USTC, SNST, Anhui, People's Republic of China
  • Y.J. Pei, L.S. Sheng, Y. Song
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  L-band Electron Accelerator is widely used for industrial irradiation. This paper describes a constant-impedance, disk-loaded structure operating on the 2Pi/3 mode. The design details of L-band travelling wave accelerating structures are presented. All RF parameters in metal disk-loaded waveguides and fields were calculated. The SUPERFISH code was used to design the bunching and accelerating cavities. At the same time, we also calculated the beam dynamics. Some model cavities have been fabricated and experimental studies were carried on. In this study, some valuable results were obtained, which can provide a beneficial datum for the design and manufacture of L-band travelling-wave accelerating structures of 50MeV LINAC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK063 The Configurable Software Interlock System for HLS-II 1836
SUSPSIK086   use link to see paper's listing under its alternate paper code  
 
  • Y. Song, G. Liu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The interlock system is an essential component for an accelerator facility. A configurable software interlock system(SIS) is designed for Hefei Light Source II (HLS-II), which complements the hardware interlock system to ensure equipment and operators' safety. The system is developed using Python under the EPICS framework with the method of separating the configuration file from the interlock program. The interlock logic is completely determined by the configuration file and its nested tree structure is easy to expand. The test results indicate that the new software interlock system is reliable, flexible and convenient to operate. This paper will describe the design and the construction of HLS-II SIS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)