Author: Serafini, L.
Paper Title Page
MOPAB064 Photoinjector Emittance Measurement at STAR 257
 
  • A. Bacci, C. Curatolo, I. Drebot, L. Serafini, V. Torri
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • R.G. Agostino, R. Barberi, V. Formoso, M. Ghedini, F. Martire, C. Pace
    UNICAL, Arcavacata di Rende, Italy
  • D. Alesini, M. Bellaveglia, J.J. Beltrano, F.G. Bisesto, G. Borgese, B. Buonomo, G. Di Pirro, G. Di Raddo, A. Esposito, A. Gallo, A. Ghigo, F. Iungo, A. Papa, L. Pellegrino, A. Stella, C. Vaccarezza, S. Vescovi
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • G. D'Auria, A. Fabris, M. Marazzi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • V. Petrillo
    Universita' degli Studi di Milano, Milano, Italy
  • A. Policicchio
    UniCal & INFN CS, Arcavacata di Rende (CS), Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
  • M. Rossetti Conti
    Universita' degli Studi di Milano & INFN, Milano, Italy
 
  STAR is an advanced Thomson source of monochromatic and tunable, ps-long, polarised X-ray beams in the 40-140 keV range. The commissioning has started at the Univ. of Calabria (Italy). The light source is driven by a high-brightness, low-emittance electron beam produced in a LINAC allowing for the source tunability and spectral density. This note reports on an emittance measurement schema based on the insertion of a slit mask in the vacuum chamber dedicated to the photocathode laser entrance. Results of the simulation of the measurement technique are reported, and the use of the data for the optimisation of the accelerator performance are detailed. The experimental setup and the application developed in EPICS for image recording and analysis are also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB065 Breit-Wheeler Scattering Events Produced by Two Interacting Compton Sources 261
 
  • I. Drebot, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • D. Micieli, E. Tassi
    UNICAL, Arcavacata di Rende, Italy
  • E. Milotti
    INFN-Trieste, Trieste, Italy
  • V. Petrillo
    Universita' degli Studi di Milano & INFN, Milano, Italy
 
  We present the dimensioning of a photon-photon collider based on conventional Compton gamma sources for the observation of Breit-Wheeler pair production and QED gamma-gamma generation. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two primary gamma rays through Compton back-scattering with two high-energy lasers. Tuning the system energy above the Breit-Wheeler cross section threshold, a flux of secondary electrons and positrons is generated. The process is analyzed by start-to-end simulations. The Monte Carlo code 'Rate Of Scattering Events' (ROSE) has been developed ad hoc for the counting of the QED events. Realistic numbers of the secondary particles yield, referring to existing or approved set-ups, a discussion of the feasibility of the experiment and the evaluation of the background are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA016 ELI-NP GBS Status 880
 
  • A. Giribono, M. Marongiu, A. Mostacci, V. Pettinacci
    INFN-Roma, Roma, Italy
  • S. Albergo
    INFN-CT, Catania, Italy
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cioeta, E. Di Pasquale, G. Di Pirro, A. Esposito, A. Falone, G. Franzini, O. Frasciello, A. Gallo, S. Guiducci, S. Incremona, F. Iungo, V.L. Lollo, L. Pellegrino, L. Piersanti, S. Pioli, R. Ricci, U. Rotundo, L. Sabbatini, A. Stella, S. Tomassini, C. Vaccarezza, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Bacci, C. Curatolo, I. Drebot, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • N. Bliss, C. Hill
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Campogiani
    Rome University La Sapienza, Roma, Italy
  • P. Cardarelli, M. Gambaccini
    INFN-Ferrara, Ferrara, Italy
  • F. Cardelli, A. Mostacci, L. Palumbo, A. Vannozzi
    University of Rome La Sapienza, Rome, Italy
  • F. Cardelli, L. Palumbo
    INFN-Roma1, Rome, Italy
  • K. Cassou, K. Dupraz, A. Martens, C.F. Ndiaye, Z.F. Zomer
    LAL, Orsay, France
  • G. D'Auria
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • L. Sabato
    U. Sannio, Benevento, Italy
  • M. Veltri
    INFN-FI, Sesto Fiorentino, Italy
 
  New generation of Compton sources are developing in different countries to take advantage of the photon energy amplification given by the Compton backscattering effect. In this framework the Eurogammas international collaboration is producing a very high brilliance gamma source for the Nuclear Pillar of the Exterme Light Infrastructure program (ELI). At present there is a lot of effort in the mass production of all the components and in the developments and tests of the different high technology devices that will operate in the gammas beam source, like the optical recirculator and the high gradient - high average current warm C band accelerating sections. In this paper we will provide a general overview of the GBS status and of the perspectives for the future integration phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB124 Study of Hadron-Photon Colliders for Secondary Beam Generation 2865
 
  • L. Serafini, C. Curatolo
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • F. Broggi
    INFN/LASA, Segrate (MI), Italy
 
  We summarize the potentialities of combining two well developed technologies, which are advancing the frontiers of hadron colliders and of light sources, namely the hadron colliders for high energy physics, and the FELs for applied and fundamental science with light, towards the generation of secondary beams with unprecedented characteristics. The collision between their typical pulses of high energy protons and X-ray photons opens a collider scenario with potentials for luminosities in excess of 1038 s-1*cm-2, adequate to generate TeV-class pion, muon, neutrino and photon beams with very high phase space densities. We report results based on Monte Carlo simulations of such a hadron-photon collider*, aiming at qualifying the features of these secondary beams in view of experiments to be performed directly, or towards the design of a new kind of muon collider.
C. Curatolo, et al., Nuclear Instruments & Methods in Physics Research A (2016), http://dx.doi.org/10.1016/j. nima.2016.09.002i
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)