Author: Schwarz, M.
Paper Title Page
MOPVA054 High Power RF Coupler for the CW-Linac Demonstrator at GSI 990
 
  • M. Heilmann, W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Amberg, M. Basten, R. Blank, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
 
  The planned super-heavy element (SHE) research project investigates heavy ions near the coulomb barrier in future experiments. A superconducting (sc) continuous wave (cw) CH-Linac Demonstrator was developed and installed behind the High Charge State Injector (HLI) at GSI Darmstadt, Germany. In future the advanced cw-LINAC setup, with several CH-cavities, will accelerates the heavy ion beam from HLI with an energy of 1.4 MeV/u up to 3.5 - 7.3 MeV/u. The RF power of several kW will be coupled capacitively into the CH-cavities with minimal reflection at an operation frequency of 217 MHz. Two ceramic windows (Al2O3) are installed inside the RF coupler, to reduce the premature contamination of the cavity and as an additional vacuum barrier. The CH-cavity will be operated at cryogenic temperature (4 K) and will be increased to room temperature along the RF coupler. The optimally adapted RF coupler design, providing minimal RF losses and simultaneously maximal performance, was optimized by electromagnetic simulations. An RF coupler design with a reflection-free RF adaptor as well as the temperature distribution along the coupler will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA055 Further Investigations for a Superconducting cw-LINAC at GSI 2197
 
  • W.A. Barth, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba, V. Gettmann, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • S. Yaramyshev
    MEPhI, Moscow, Russia
 
  For superconducting (sc) accelerator sections operating at low and medium beam energies very compact accelerating-focusing structures are strongly required, as well as short focusing periods, high accelerating gradients and very short drift spaces. The Facility for Antiproton and Ion Research (FAIR) is going to use heavy ion beams with extremely high peak current from UNiversal Linear ACcelerator (UNILAC) and the synchrotron SIS18 as an injector for the SIS100. To keep the GSI-Super Heavy Element program competitive on a high level and even beyond, a standalone sc continuous wave LINAC in combination with the upgraded GSI High Charge State injector is envisaged. In preparation for this, testing of the first LINAC section (financed by HIM and GSI) as a demonstration of the capability of 216 MHz multi gap Crossbar H-structures (CH) is still ongoing, while an accelerating gradient of 9.6 MV/m (4K) at a sufficient quality factor has been already reached in a horizontal cryostat. As a final R&D step towards an entire LINAC three advanced cryo modules, each comprising two short CH cavities, should be built until 2019, serving for first user experiments at the coulomb barrier.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA061 Beam Dynamics Study for the HIM&GSI Heavy Ion SC CW-LINAC 2217
 
  • S. Yaramyshev, W.A. Barth, M. Heilmann
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • M. Basten, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  A sc cw-linac with variable output energy from 3.7 to 7.5 MeV/u for ions with mass to charge ratio of A/Z<6 is recently under development at HIM and GSI. Following the results of the latest RF-tests with the newly constructed sc CH-DTL cavity, even heavier ions up to Uranium 28+ could be potentially accelerated with the already reached higher RF-voltage. Also the possibility for an up to 10 MeV/u increased output energy, using the same 13 independent cavities, is under consideration. All these options require an advanced beam dynamics layout, as well as a versatile procedure for transverse and longitudinal beam matching along the entire linac. The proposed algorithms are discussed and the obtained simulation results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA069 Test of a High Power Room Temperature CH DTL Cavity 2237
 
  • N.F. Petry, S. Huneck, K. Kümpel, H. Podlech, U. Ratzinger, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) is planned to deliver ultra-short neutron pulses at high intensities and repetition rates. As part of FRANZ a 175 MHz room temperature 5-gap CH DTL cavity was designed and built. Its main task will be focusing the particle bunch longitudinally at 2 MeV particle energy. Furthermore the CH cavity can also be used to increase the energy as well as decrease it by 0.2 MeV. The rebuncher and its cooling system is optimized to work with a 5 kW amplifier. The amplification system is intended to provide continuous power (cw mode). Due to its operating parameters being nearly identical to the requirements of the MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project, experience for future cavity designs was gained. This includes considerations concerning cooling with use of a 12 kW amplifier. The recent results of conditioning and high power tests will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA072 Conceptual Injector Design for an Electron-Ion-Collider Front-End 2246
 
  • H. Podlech, M. Busch, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • R.C. York
    NSCL, East Lansing, Michigan, USA
  • C. Zhang
    GSI, Darmstadt, Germany
 
  An electron-hadron collider (EIC) could be the next large-scale nuclear physics facility in the United States. A hadron linac with a final energy of 40 AMeV (heavy ions) and up to 130 MeV for protons with an upgrade path to higher energies is required as the first step of the hadron accelerator chain. From a cost point of view superconducting technology seems to be the better choice above an energy of about 5 AMeV compared to a room temperature (rt) solution. This paper describes the conceptual design of a rt front-end up to an energy of 5 AMeV appropriate as initial element of the EIC hadron linac. It consists of two separate injectors based on efficient H-mode cavities, one optimized for heavy ions (Pb30+) and the other optimized for protons and deuterons. Beam dynamics and first RF simulations are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)