Author: Schramm, U.
Paper Title Page
MOZB1 First Results with the Novel Peta-Watt Laser Acceleration Facility in Dresden 48
 
  • U. Schramm, D. Albach, C. Bernert, S. Bock, F. Brack, J. Branco, M.H. Bussmann, J.P. Couperus, A.D. Debus, C. Eisenmann, M. Garten, R. Gebhardt, S. Grams, U. Helbig, A. Huebl, A. Irman, A. Köhler, J.M. Krämer, S. Kraft, F. Kroll, J. Metzkes, L. Obst, R.G. Pausch, M. Rehwald, H.P. Schlenvoigt, M. Siebold, K. Steiniger, O. Zarini, K. Zeil
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
  • T. Kluge, M. Kuntzsch, U. Lehnert, M. Löser, P. Michel, R. Sauerbrey
    HZDR, Dresden, Germany
 
  Applications of laser plasma accelerated particle beams ranging from driving of light sources to radiation therapy require the scaling of beam energy and charge as well as reproducible operating conditions. Both issues have motivated the development of novel table-top class Petawatt laser systems (e.g., 30J pulse energy in 30fs) with unprecedented pulse control, here represented by the Draco-PW system recently commissioned at HZDR Dresden. First results will be presented on laser wakefield electron acceleration where in the beam loading regime high bunch charges in the nC range could be efficiently accelerated with good beam quality, and on proton acceleration where pulsed magnet beam transport ensured depth dose distributions allowing for tumor irradiation in animal models.  
slides icon Slides MOZB1 [4.059 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOZB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXAA1
Laser Cooling of Relativistic Heavy Ion Beams  
 
  • M.H. Bussmann, M. Löser
    HZDR, Dresden, Germany
  • O. Boine-Frankenheim, L. Eidam
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim, L. Eidam, T. Kühl, F. Nolden, R.M. Sanchez Alarcon, M. Steck, T. Stöhlker, D.F.A. Winters
    GSI, Darmstadt, Germany
  • A. Buss, V. Hannen, D. Winzen
    Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
  • Z. Huang, X. Ma, H. Wang, W.Q. Wen
    IMP/CAS, Lanzhou, People's Republic of China
  • D. Kiefer, S. Klammes, W. Nörtershäuser, J. Ullmann, T. Walther
    TU Darmstadt, Darmstadt, Germany
  • U. Schramm
    TU Dresden, Dresden, Germany
  • U. Schramm, M. Siebold
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Stöhlker
    HIJ, Jena, Germany
  • C. Weinheimer
    Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
 
  At high energies laser cooling is a very promising technique to reduce phase space of beams of high energy ions effciently and fast. With the advent of new facilities such as FAIR and HIAF research focuses on developing robust laser cooling setups. This requires an understanding of the underlying beam dynamics at high beam intensities, the development of reliable laser systems that can be used to cool a large variety of ion species and optical detection systems that complement standard accelerator beam diagnostics. Based on the lessons learned from ongoing experiments at the ESR at GSI, Darmstadt, and the CSRe at IMP, Lanzhou, the important design aspects of future laser cooling installations will be discussed. The talk will follow a how-to approach to discuss key design aspects of laser cooling setups and emphasize the important connection between advanced beam dynamics studies and optical control and diagnostics.  
slides icon Slides FRXAA1 [4.765 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK010 Investigating the Key Parameters of a Staged Laser- and Particle Driven Plasma Wakefield Accelerator Experiment 1703
 
  • T. Heinemann, R.W. Aßmann, O. S. Kononenko, A. Martinez de la Ossa
    DESY, Hamburg, Germany
  • J.P. Couperus, A. Irman, A. Köhler, O. Zarini
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
  • T. Heinemann, B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
  • T. Heinemann
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • A. Knetsch
    University of Hamburg, Hamburg, Germany
  • T. Kurz
    HZDR, Dresden, Germany
  • U. Schramm
    TU Dresden, Dresden, Germany
 
  Plasma wakefield accelerators can be driven by either a powerful laser pulse (LWFA) or a high-current charged particle beam (PWFA). A plasma accelerator combining both schemes consists of a LWFA providing an electron beam which subsequently drives a PWFA in the highly nonlinear regime. This scenario explicitly makes use of the advantages unique to each method, particularly exploiting the capabilities of PWFA schemes to provide high-brightness beams, while the LWFA stage inherently fulfils the demand for compact high-current electron bunches required as PWFA drivers. Effectively, the sub-sequent PWFA stage operates as beam brightness and energy booster of the initial LWFA output, aiming to match the demanding beam quality requirements of accelerator based light sources. We report on numerical studies towards the implementation of a proof-of-principle experiment at the DRACO laser facility at Helmholtz-Zentrum Dresden-Rossendorf (HZDR).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)