Author: Scandale, W.
Paper Title Page
MOPAB007 Status of Crystal Collimation Studies at the LHC 84
SUSPSIK008   use link to see paper's listing under its alternate paper code  
 
  • R. Rossi, O. Aberle, O.Ø. Andreassen, M.E.J. Butcher, C.A. Dionisio Barreto, I. Lamas Garcia, A. Masi, D. Mirarchi, S. Montesano, S. Redaelli, A. Rijllart, W. Scandale, P. Serrano Galvez, G. Valentino
    CERN, Geneva, Switzerland
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
 
  Crystal collimation is a technique that relies on highly pure bent crystals to coherently deflect beam particles - through the channeling mechanisms - onto dedicated absorbers. Standard multi-stage collimation systems for hadron beams use amorphous materials as primary collimators and might be limited by nuclear interactions and ion fragmentation that are strongly suppressed in crystals. A crystal collimation setup was installed in the betatron cleaning insertion of the Large Hadron Collider (LHC) to demonstrate with LHC beams the feasibility of this concept and to compare its performance with that of the present system. Channeling was observed for the first time with 6.5 TeV beam and and plans for further crystal collimation beam tests at the LHC are discussed. Results of these first beam tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK048 Experimental Results of Crystal-Assisted Slow Extraction at the SPS 623
 
  • M.A. Fraser, S.S. Gilardoni, B. Goddard, V. Kain, D. Mirarchi, S. Montesano, S. Petrucci, S. Redaelli, R. Rossi, W. Scandale, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
  • F.M. Addesa, G. Cavoto, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • F. Murtas
    INFN/LNF, Frascati (Roma), Italy
 
  The possibility of extracting highly energetic particles from the Super Proton Synchrotron (SPS) by means of silicon bent crystals has been explored since the 1990's. The channelling effect of a bent crystal can be used to strongly deflect primary protons and eject them from the synchrotron. Many studies and experiments have been carried out to investigate crystal channelling effects. The extraction of 120 and 270 GeV proton beams has already been demonstrated in the SPS with dedicated experiments located in the ring. Presently in the SPS, the UA9 experiment is performing studies to evaluate the possibility to use bent silicon crystals to steer particle beams in high energy accelerators. Recent studies on the feasibility of extraction from the SPS have been made using the UA9 infrastructure with a longer-term view of using crystals to help mitigate slow extraction induced activation of the SPS. In this paper, the possibility to eject particles into the extraction channel in LSS2 using the bent crystals already installed in the SPS is presented. Details of the concept, simulations and measurements carried out with beam are presented, before the outlook for the future is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK050 Reduction of Resonant Slow Extraction Losses with Shadowing of Septum Wires by a Bent Crystal 631
 
  • F.M. Velotti, M.A. Fraser, B. Goddard, V. Kain, W. Scandale, L.S. Stoel
    CERN, Geneva, Switzerland
 
  A new experiment, SHiP, is being studied at CERN to investigate the existence of three Heavy Neutral Leptons in order to give experimental proof to the proposed neutrino minimal Standard Model. High-intensity slow-extraction of protons from the SPS is a pre-requisite for SHiP. The experiment requires a resonant extraction with in a 7.2 s cycle, and about 4·1013 protons extracted at 400 GeV in a 1 s flat-top, to achieve the needed 2·1020 protons on target in five years. Although the SPS has delivered this in the past to the CNGS experiment with fast extraction, for SHiP beam losses and activation of the SPS electrostatic extraction septum (ZS) could be a serious performance limitation, since the target number of protons to resonantly extract per year is a factor of two higher than ever achieved before and a factor of four than ever reached with the third-integer slow extraction. In this paper, a novel extraction technique to significantly reduce the losses at the ZS is proposed, based on the use of a bent crystal to shadow the septum wires. Theoretical concepts are developed, the performance gain quantified and a possible layout proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)